All India Aakash Test Series for JEE (Advanced)-2020

TEST - 2A (Paper-2) - Code-E

Test Date : 24/11/2019

ANSWERS

PHYSICS		CHE	CHEMISTRY		MATHEMATICS	
1.	(B, D)	21.	(B, C, D)	41.	(B, C)	
2.	(B, D)	22.	(A, C, D)	42.	(B, D)	
3.	(A, D)	23.	(D)	43.	(A)	
4.	(B, C)	24.	(A, C, D)	44.	(A, B)	
5.	(A)	25.	(C, D)	45.	(B, C)	
6.	(D)	26.	(D)	46.	(C)	
7.	(B)	27.	(B)	47.	(D)	
8.	(C)	28.	(A)	48.	(A)	
9.	(A)	29.	(B)	49.	(D)	
10.	(C)	30.	(A)	50.	(A)	
11.	(C)	31.	(B)	51.	(C)	
12.	(B)	32.	(A)	52.	(D)	
13.	(C)	33.	(B)	53.	(B)	
14.	(B)	34.	(C)	54.	(A)	
15.	(A)	35.	(A)	55.	(C)	
16.	$A \rightarrow (P, R)$	36.	$A \to (Q,S)$	56.	$A \to (P)$	
	$B \to (P,S)$		$B \to (R)$		$B \to (Q)$	
	$C \to (Q,T)$		$C \to (Q,R)$		$C \to (Q,S)$	
	$D \to (Q,S)$		$D \to (P,T)$		$D \to (R,S)$	
17.	$A \rightarrow (R, T)$	37.	$A \to (Q,S)$	57.	$A \to (P,Q)$	
	$B \to (S,T)$		$B \to (Q)$		$B \to (P,Q)$	
	$C \to (Q,S)$		$C \to (R,T)$		$C \to (R,T)$	
	$D \to (Q,S)$		$D\to(Q)$		$D\to(S,T)$	
18.	(02)	38.	(07)	58.	(09)	
19.	(01)	39.	(03)	59.	(00)	
20.	(06)	40.	(06)	60.	(03)	

HINTS & SOLUTIONS

PART - I (PHYSICS)

1. Answer (B, D)

Hint : *B* and *C* will be in series. Solution :

 $C_{BC} = \frac{2 \times 3}{2 + 3} = \frac{6}{5} \mu F$ $\therefore \quad \Delta q_{S} = \frac{\frac{6}{5}}{\frac{6}{5} + 1} \times 110 = 60 \ \mu C$

$$\therefore \quad q_A = 110 - 60 = 50 \ \mu\text{C}$$
$$V_B = \frac{60}{2} = 30 \ \text{V}, \ V_C = \frac{60}{3} = 20 \ \text{V}$$

2. Answer (B, D)

Hint : Particle performs SHM. Solution :

$$E = \frac{Qx}{4\pi\varepsilon_0 (R^2 + x^2)^{\frac{3}{2}}}, \quad x \ll R$$

$$\Rightarrow \quad E = \frac{Qx}{4\pi\varepsilon_0 R^3}$$

$$\therefore \quad \omega = \sqrt{\frac{Qq}{m \times 4\pi\varepsilon_0 R^3}}$$

$$\therefore \quad T = 2\pi \sqrt{\frac{m \times 4\pi\varepsilon_0 R^3}{Qq}} = 4\pi \sqrt{\frac{\pi\varepsilon_0 m R^3}{Qq}}$$

and, $V_{max} = \omega a = \frac{ax}{2} \sqrt{\frac{Qq}{\pi\varepsilon_0 m R^3}}$

3. Answer (A, D)

Hint : Frequency as well as wavelength change. Solution :

. .

$$\lambda_{1} = \lambda_{0} - \frac{V}{5}T \implies \lambda_{1} = \frac{4\lambda_{0}}{5}$$
$$\therefore \quad \lambda_{2} = 2\lambda_{1} = \frac{8\lambda_{0}}{5}$$
and,
$$T' = \frac{\lambda'}{2V + \frac{V}{5}} = \frac{5\lambda'}{11V}$$
$$\therefore \quad f' = \frac{1}{T'} = \frac{11V}{5 \times \left(\frac{8\lambda_{0}}{5}\right)} = \frac{11V}{8f_{0}}$$

4. Answer (B, C) Hint : $\Delta Q = \Delta U + \Delta W$ Solution : $Q = \Delta U + \frac{Q}{2} \implies \Delta U = \frac{Q}{2}$ $\Rightarrow n \times \left(\frac{3R}{2}\right) \cdot \Delta T = \frac{nC\Delta T}{2}$ $\Rightarrow C = 3R$ And, $\Delta U = \Delta W$ $\Rightarrow n\left(\frac{3R}{2}\right) \cdot dT = PdV$ $\Rightarrow P^3 V = \text{constant}$ $\Rightarrow P^2 \times T = \text{constant}$ $\Rightarrow P \propto \frac{1}{\sqrt{T}}$

5. Answer (A)

Hint : A balanced wheatstone bridge is formed.

Solution :

$$\therefore V_D - V_C = 0$$

$$\therefore R_{eq} = \frac{12 \times 6}{12 + 6} = 4 \Omega$$

$$\therefore I_{battery} = \frac{20}{4} = 5 A$$

$$I_{AD} = \frac{20}{12} = \frac{5}{3} A$$

Hint : Two spheres behave as capacitor and then become in parallel finally.

Solution :

$$Q_{0} = 4\pi\varepsilon_{0} (2a) \times V$$

$$\therefore \quad i = \frac{V}{R} e^{-\frac{t}{\tau}}, \quad \tau = R \times \left(\frac{C_{1}C_{2}}{C_{1} + C_{2}}\right)$$

$$= R \times \frac{4\pi\varepsilon_{0}a \times 2a}{3a}$$

$$= \frac{8\pi\varepsilon_{0}Ra}{3}$$

$$\therefore \quad i = \frac{V}{R} e^{-\frac{3t}{8\pi\varepsilon_{0}Ra}}$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

7. Answer (B)

Hint : Two spheres behave as capacitor and then become in parallel finally.

Solution :

Final charge on smaller sphere

$$q_{2} = \frac{C_{2}}{C_{1} + C_{2}} \times Q_{0}$$
$$= \frac{4\pi\varepsilon_{0} \times a}{4\pi\varepsilon_{0} (a + 2a)} \times \left[4\pi\varepsilon_{0} \times (2a) \times V\right]$$
$$= \frac{1}{3} \times 8\pi\varepsilon_{0} aV$$

8. Answer (C)

Hint : Two spheres behave as capacitor and then become in parallel finally.

Solution :

Total heat dissipation

$$H = \frac{1}{2} \times \left(\frac{C_1 C_2}{C_1 + C_2}\right) \times V^2$$
$$= \frac{1}{2} \times \frac{2}{3} \times (4\pi \varepsilon_0 a) V^2$$
$$= \frac{4\pi \varepsilon_0 a V^2}{3}$$

9. Answer (A)

Hint : Speed of sound, $V = \sqrt{\frac{\gamma RT}{M}}$

Solution :

$$V = \sqrt{\frac{\gamma RT}{M}}$$

$$\Rightarrow T = \frac{V^2 M}{\gamma R} = \frac{(300)^2 \times (29 \times 10^{-3})}{1.4 \times 8.314}$$

$$\approx 224 \text{ K}$$

10. Answer (C)

Hint : Put the value of T_0 .

Solution :

- :: $T = T_0 0.006 h_0$
- \Rightarrow 273 = 224 0.006 × h_0

$$\Rightarrow h_0 = 8170 \text{ m}$$

11. Answer (C)

Hint : Put the value of h_0 .

Solution :

$$P = P_0 \left(1 - \frac{0.006 \times 8170}{273} \right) \frac{29 \times 10^{-3} \times 9.8}{8.31 \times 0.006}$$
$$= P_0 \times (0.82)^{5.7}$$
$$= 0.32 P_0$$

12. Answer (B)

Hint : Use KVL and KCL

Solution :

For R_{AB}

$$\therefore R_{AB} = \frac{7R}{12}$$

For R_{AC}

$$\therefore \quad R_{AC} = \frac{3R}{4}$$

$$\therefore \quad \frac{R_{AB}}{R_{AC}} = \frac{7 \times 4}{12 \times 3} = \frac{7}{9}$$

13. Answer (C)

Hint : Flux
$$= \frac{q}{4\pi\varepsilon_0} \times \text{Solid angle} \times 2$$

Solution :

$$\phi = \frac{q}{\varepsilon_0} \times \frac{2\pi(1 - \cos\theta)}{4\pi} \times 2$$
$$= \frac{q}{\varepsilon_0} \left(1 - \frac{\ell}{\sqrt{\ell^2 + R^2}} \right)$$
$$= \frac{q}{\varepsilon_0} \left(1 - \frac{2}{\sqrt{5}} \right)$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2020 Test - 2A (Paper-2) (Code-E)_(Hints & Solutions)

14. Answer (B)

Hint : Use concept of standing wave.

Solution :

$$y = y_1 + y_2$$

= $a \left[sin\left(\frac{\pi}{2}x - \omega t\right) + sin\left(\frac{\pi}{2}x + \omega t + \frac{\pi}{3}\right) \right]$
 $\Rightarrow \quad y = 2a sin\left(\frac{\pi}{2}x + \frac{\pi}{6}\right) \cdot cos\left(cot + \frac{\pi}{6}\right)$

For nodes, $2a\sin\left(\frac{\pi}{2}x+\frac{\pi}{6}\right)=0$

$$\Rightarrow \frac{\pi}{2}x + \frac{\pi}{6} = \pi, 2\pi, 3\pi, 4\pi, \dots$$
5 11 17 23

$$\Rightarrow x = \frac{5}{3}, \frac{11}{3}, \frac{17}{3}, \frac{23}{3}$$

$$\therefore \quad \text{For } 0 \le x \le 6,$$

Number of nodes = 3

15. Answer (A)

Hint : $P^{1-\gamma}$ T^{γ} = constant

Solution :

$$P_1^{1-\gamma}T_1^{\gamma} = P_2^{1-\gamma}T_2^{\gamma}$$

$$\Rightarrow T_2 = 1000 \times \left(\frac{3}{2}\right)^{\left(\frac{3}{5}-1\right)} = 850 \text{ K}$$
Then, $\frac{P_3}{T_3} = \frac{P_2}{T_2} \Rightarrow T_3 = 425 \text{ K}$

$$\therefore \quad \Delta Q = nC_v \Delta T = 1 \times \left(\frac{3R}{2}\right) \times (850 - 425)$$

16. Answer A(P, R); B(P, S); C(Q, T); D(Q, S)

Hint : After earthing, charge on outer surface of outer most plates becomes zero.

Solution :

Before earthing

17. Answer A(R, T); B(S, T); C(Q, S); D(Q, S) **Hint :** In isothermal process $\Delta U = 0$ **Solution :** For A : *PV* = constant $\Rightarrow \Delta U = 0, \Delta W = \text{positive}$ $\Rightarrow \Delta Q = \text{positive}$

For B :
$$P = \frac{pRT}{m} \Rightarrow T = \text{constant}$$

 $\Rightarrow \Delta U = 0, \Delta W = -\text{negative}, \Delta Q = \text{negative}$
And so on.

18. Answer (02)

Hint : Reduce it to a finite circuit.

Solution :

$$R_{AB} = R_{CD}, \ V_{CD} = \frac{1}{2} V_{AB}$$

- ... Current gets equally distributed
- \therefore $R_2 = R_{AB}$

And,
$$R_{AB} = R_1 + \left(\frac{R_2}{2}\right) = R_2$$

$$\Rightarrow \frac{R_2}{R_1} = 2$$

19. Answer (01)

Hint : Use Newton's law.

Solution :

$$\frac{-dT}{dt} = b(T - T_s)$$

$$\Rightarrow \Delta T = (\Delta T)_0 e^{-bt}$$

$$\therefore t_2 = 2t_0$$

$$\therefore n = 1$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

20. Answer (06)

Hint : Use superposition principle. Solution :

PART - II (CHEMISTRY)

Answer (B, C, D)
 Hint : Benzaldehyde is not oxidised by Fehling's reagent.

Solution :

Acetophenone can give iodoform and bromoform.

22. Answer (A, C, D) Hint :

Solution :

Q is slightly basic

P contains fluorine atom

Because of the presence of $-NH_2$ group, Q can give coupling reaction

23. Answer (D)

Hint : Leucine is
$$HC - H_2C - C - COOH$$

 CH_3 HH_2
Solution :
 $CO_2C_2H_5$ $CO_2C_2H_5$
 $CH - CO_2C_2H_5$ $HC - CO_2C_2H_5$
 $CH - CO_2C_2H_5$ HL_2
 CH_3 $CO_2C_2H_5$
 CH_3 H_2
 CH_3 H_2
 CH_3 $CO_2C_2H_5$
 CH_3 $CO_2C_2H_5$
 H_3 $CO_2C_2H_5$
 CH_3 H_2
 CH_3 $CO_2C_2H_5$
 $CO_2C_2H_5$
 $CO_$

24. Answer (A, C, D) NH (CH₄)

Hint : O is more basic than aniline

10

are less basic than aniline

25. Answer (C, D)

Solution :

Hint :

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2020 Test - 2A (Paper-2) (Code-E)_(Hints & Solutions)

26. Answer (D)

Hint : Given D-glyceraldehyde is 'R'

Solution :

R as well as D.

27. Answer (B)

Hint : D and L convention is used for amino acids also

Solution :

- (D) fructose is laevorotatory (I)
- (D) glucose is dextrorotatory(d)

28. Answer (A)

Hint : Product obtained after ozonolysis

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

32. Answer (A)

Hint : It is electrophilic substitution reaction.

Solution :

The intermediate formed when ${}^{+}NO_{2}$ attacks at position C-2 is more stable.

33. Answer (B)

Hint :

Solution :

34. Answer (C)

Hint :

Solution :

35. Answer (A)

Hint : Excess of ether and water as solvent will favour $S_N 1$ reaction.

Solution :

36. Answer A(Q, S); B(R); C(Q, R); D(P, T)

Hint :

Solution :

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2020

Test - 2A (Paper-2) (Code-E)_(Hints & Solutions)

37. Answer A(Q, S); B(Q); C(R, T); D(Q)

Hint : LiAIH₄ is a very strong reducing agent can reduce almost functional groups to lower oxidation state, except alkenes and alkynes.

Solution :

NaBH₄ cannot reduce amide into amine

NaBH₄ can reduce only acid halide into alcohol among the given transformation.

38. Answer (07)

Solution :

x = 1, y = 2, z = 4

39. Answer (03)

Hint :

Solution :

Possible Products

40. Answer (06)

Hint : O, P-substituted Bromo group are more likely to get substituted.

Solution :

The Br group at position 4 is most likely to get substitute and at position 2, is least

PART - III (MATHEMATICS)

41. Answer (B, C)

Hint : Translation and Rotation of axes.

Solution :

For f(x,y) = 0

new origin=

$$\left(\frac{hf-bh}{ab-h^2},\frac{gf-af}{ab-h^2}\right) \equiv \left(\frac{28}{-14},\frac{42}{-14}\right) \equiv \left(-2,-3\right)$$

For g(x,y) = 0

$$\theta = \frac{1}{2} \tan^{-1} \left(\frac{2h}{a-b} \right) = \frac{1}{2} \tan^{-1} \left(\frac{2 \times \sqrt{3}}{2} \right)$$

$$=\frac{1}{2}\times\frac{\pi}{3}=\frac{\pi}{6}$$

42. Answer (B, D)

Hint : Distance between two parallel lines.

Solution :

Distance between two parallel lines = $2\sqrt{5}$

- $\therefore \text{ points on line } \frac{x-1}{\frac{-2}{\sqrt{5}}} = \frac{y+2}{\frac{1}{\sqrt{5}}} = \pm 2\sqrt{5}$
- \therefore points are (-3, 0) and (5, -4)
- :. Required lines are

$$2x - y + 6 = 0$$
 and $2x - y - 14 = 0$

43. Answer (A)

Hint : Division formula between two points.

Solution :

$$A\left(\frac{ab}{a+b}\left(\frac{1-m}{-m},0\right):B\left(-0,\frac{ab}{a+b}\left(1-m\right)\right)$$

Mid-point of AB is (h, k)

$$\therefore 2h = \frac{ab}{a+b} \frac{(m-1)}{m}; 2k \frac{ab}{a+b} (1-m)$$

$$\therefore \frac{1}{2h} + \frac{1}{2k} = \frac{a+b}{ab}$$

 \Rightarrow ab (x + y) = 2 (a + b) xy is the locus

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

$$\therefore P\left(\frac{\frac{3ab}{a+b}\left(1-\frac{1}{m}\right)}{4}, \frac{\frac{ab}{a+b}\left(1-m\right)}{4}\right)$$

 \therefore (*x* + 3*y*)*ab* = 4(*a* + *b*)*xy* is the required locus

44. Answer (A, B)

Hint : Condition of two degree equation (to represent pair of straight line.

Solution :

$$\Delta = 0 \Rightarrow abc + 2fgh = af^2 + bg^2 + ch^2$$

 $\Rightarrow c = \frac{-10}{9}$

Also

$$\cos \alpha = \left| \frac{a+b}{\sqrt{(a-b)^2 + 4h^2}} \right| \Rightarrow \alpha = \cos^{-1} \left(\frac{5}{\sqrt{34}} \right)$$

45. Answer (B, C)

Hint : Perpendicularity of two lines.

Solution :

 L_1 and L_2 if they are \perp to a common line $\Rightarrow \lambda = -1$ for two adjacent sides of a square

$$L_1 \perp L_2$$

$$\therefore (\lambda^2 + 1) \lambda^2 = 1$$

$$\Rightarrow \lambda^5 + 2\lambda^3 + \lambda - 1 = 0 = f(\lambda)$$

- $\therefore f'(\lambda) = 5\lambda^4 + 6\lambda^2 + 1 = 0$
- \therefore $f(\lambda) = 0$ has only one real root
- 46. Answer (C)

Hint : Family of circle with line.

Solution :

Let required circle

$$x^2 + y^2 - 3x + 2y - 4 + \lambda (2x + 5y + 2) = 0$$

$$\therefore C\left(\frac{3-2\lambda}{2}, \frac{-(5\lambda+2)}{2}\right) \text{ satisfy } x+y=11$$

 $\therefore \lambda = -3$

 \therefore Required circle is $x^2 + y^2 - 9x - 13y - 10 = 0$

47. Answer (D)

Hint : Orthogonal of two circles.

Solution :

Let required circle

$$(x-1)^2 + (y+1)^2 + \lambda(2x+3y+1) = 0$$
 (i)

Circle with diameter points (0,3) and (-2,-1) is

$$x^2 + y^2 + 2x - 2y - 3 = 0$$
 (ii)

(i) of (ii) intersect orthogonally

$$\therefore (2\lambda - 1) + -2\left(\frac{3\lambda}{2} + 1\right) = \lambda - 1 \Longrightarrow \lambda = \frac{-3}{2}$$

Required circle is $2x^2 + 2y^2 - 10x - 5y + 1 = 0$ 48. Answer (A)

Hint : Touching concept of line with circle.

Solution :

Let required circle

$$(x^{2} + y^{2} - 4) + \lambda(x + 2y - 4) = 0$$
$$C\left(\frac{-\lambda}{2}, -\lambda\right) = \lambda = \sqrt{\frac{5\lambda^{2}}{4} + 4\lambda + 4}$$

 \therefore it touches line x + 2y - 5 = 0

$$\therefore \left| \frac{\frac{-\lambda}{2} + 2(-\lambda) - 5}{\sqrt{5}} \right| = \sqrt{\frac{5\lambda^2}{4} + 4\lambda + 4}$$

$$\Rightarrow 5(\lambda + 2)^2 = 5\lambda^2 + 16\lambda + 16$$
$$\Rightarrow \lambda = -1$$

- \therefore Required circle $x^2 + y^2 x 2y = 0$
- 49. Answer (D)

Hint : Chord of contact of circle.

Solution :

Equation of C.O.C hx + ky = 8 (i)

Also $tk = h + 2t^2$ (ii) \therefore (*h*,*k*) satisfy tangent)

$$\Rightarrow hx + y \frac{(h+2t^2)}{t} - 8 = 0$$
$$\Rightarrow 2(ty-4) + h\left(x + \frac{y}{t}\right) = 0$$

... Line passes through point

$$y = \frac{4}{t}$$
 and $x = \frac{-y}{t}$

 $\Rightarrow \frac{y}{4} = -\frac{x}{y} \Rightarrow y^2 = -4x$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2020 Test - 2A (Paper-2) (Code-E)_(Hints & Solutions)

50. Answer (A)

Hint : Point of intersection of two curves.

Solution :

Point of intersection of x = -2 and $x^2 + y^2 = 16$

$$\therefore y^2 = 12 \Rightarrow y = \pm 2\sqrt{3}$$

 \therefore Point $\left(-2, 2\sqrt{3}\right)$

51. Answer (C)

Hint : Circumcircle of triangle ABC

Solution :

The equation of the circumcircle of $\triangle AQB$ is

 $(x^2 + y^2 - 8) + \lambda(hx + ky - 8) = 0 :: (A = -1)$ due to (0,0) satisfy it

 \therefore Equation is $x^2 + y^2 - hx - ky = 0$

Now centre $\left(\frac{h}{2}, \frac{k}{2}\right)$

 \therefore For locus let $x = \frac{h}{2}$; $y = \frac{k}{2}$

h = 2x and k = 2y

$$\therefore tk = h + 2t^2 \therefore at t = 2$$

The required locus is 2y = x + 4

52. Answer (D)

Hint : Length of latus rectum independency.

Solution :

 $\theta = 2 \tan^{-1} 2$

$$\because \sqrt{3} < 2 < \sqrt{2} + 1$$
$$\frac{\pi}{3} < \tan^{-1} 2 < \frac{3\pi}{8}$$

$$\Rightarrow \frac{2\pi}{3} < \theta < \frac{3\pi}{4}$$

53. Answer (B)

Hint : Condition of common tangent on two curves.

Solution :

$$y = \frac{x}{2} + 2$$
 is tangent on $\frac{x^2}{4} + \frac{y^2}{b^2} = 1$

 $\Rightarrow 4 + 4b^2 = 16 \Rightarrow b^2 + 1 = 4 \Rightarrow b = \pm\sqrt{3}$

Now tangent at other point is given by -2y = x+4

$$\Rightarrow x + 2y + 4 = 0$$

54. Answer (A)

Hint : Locus of midpoint of Parallel chords.

Solution :

Let middle point is (*h*,*k*)

... Equation of chord in mid-point form is

$$\frac{x}{h} + \frac{y}{k} = 2$$

$$\therefore -\frac{1}{h \times \frac{1}{k}} = m \Longrightarrow k = -mh$$

 \Rightarrow *y* + *mx* = 0 is the required locus

55. Answer (C)

Hint : I.T.F. conversion in domain.

Solution :

Let $\sin^{-1}x = \theta \Rightarrow x = \sin \theta$

Now

$$\cos^{-1} x = \cos^{-1} \left(\sin \theta \right) = \cos^{-1} \left(-\cos \left(\frac{3\pi}{2} - \theta \right) \right)$$
$$= \pi - \cos^{-1} \left(\cos \left(\frac{3\pi}{2} - \theta \right) \right)$$
$$= \pi - \left(\frac{3\pi}{2} - \theta \right) \text{as } \frac{3\pi}{2} - \theta \in (0, \pi)$$
$$= \theta - \frac{\pi}{2} = \sin^{-1} x - \frac{\pi}{2}$$
$$\therefore \sin^{-1} x + \cos^{-1} x = 2\sin^{-1} x - \frac{\pi}{2}$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

56. Answer A(P); B(Q); C(Q, S); D(R, S)

Hint : Type of functions concept.

Solution :

(A)
$$f(x) = \begin{cases} \left((1)^{1} \right)^{n} x > 0 = 1 , x > 0 \\ \left((-1)^{-1} \right)^{n} x < 0 , x < 0 \end{cases}$$

f(x) is an odd function. f(x) is not bijective

 \therefore f(x) is not one one

(B)
$$f(x) = \frac{x}{e^x - 1} + \frac{x}{2} + 1$$

 $f(x) = \frac{-x}{e^{-x} - 1} - \frac{x}{2} + 1 = x + \frac{x}{e^x - 1} - \frac{x}{2} + f(x)$

 \therefore f(x) is an even function \therefore f(x) is not bijective

(C) f(-x) = f(x) : f(x) is even. f(x) is periodic but time period not define

(D) $f(x) = \max\{\tan x, \cot x\}$. From graph of f(x) it is clear that

f(x) is neither even nor odd

$$\therefore f(x+\pi) = \max\{\tan(x+\pi), \cot(x+\pi)\}$$

 $= \max \{ \tan x, \cot x \} f(x) \text{ is periodic with } f(x) \text{ is }$ periodic with π

57. Answer A(P, Q); B(P, Q); C(R, T); D(S, T)

Hint : Property of perpendicular normals.

Solution :

Equation of normal at 'p' is

 $y = -tx + 2at + at^3$

Put
$$y = -2at \implies x = 4a + at^2$$

 \therefore G (4a + at², -2at)

Required locus $y^2 = 4a(x - 4a)$

 $\therefore y^2 = 4(x-4)$

Now verify each option

58. Answer (09)

Solution :

$$\frac{1}{1-\sin(\cos^{-1}x)} = 2$$

$$\Rightarrow \sin(\cos^{-1}x) = \frac{1}{2}$$

$$\Rightarrow \cos^{-1}x = \frac{\pi}{6} \Rightarrow x = \frac{\sqrt{3}}{2} \Rightarrow 4x^{2} = 3$$

$$\Rightarrow 12x^{2} = 9$$

59. Answer (00)

Hint : Trigonometric conversion of I.T.F.

Solution :

$$\sin\left(\cos^{-1}\left(\tan\left(\tan^{-1}\left(\sqrt{x^{2}-1}\right)\right)\right)\right)$$
$$= \sin\left(\cos^{-1}\sqrt{x^{2}-1}\right)$$
$$= \sin\left(\sin^{-1}\sqrt{2-x^{2}}\right) = \sqrt{2-x^{2}}$$
$$\therefore \text{ Common domain } \left[1,\sqrt{2}\right] \Rightarrow 2-x^{2} = 1+x$$

$$\Rightarrow x^{2} + x - 1 = 0 \Rightarrow x = \frac{-1 \pm \sqrt{5}}{2}$$
$$x = \frac{\sqrt{5} - 1}{2} \notin \left[1, \sqrt{2}\right]$$

∴ No solution exists

2

60. Answer (03)

Hint : Graphical solution.

Solution :

From graph it is clear that curves intersect at 3 points

.: Only 3 solutions

All India Aakash Test Series for JEE (Advanced)-2020

TEST - 2A (Paper-2) - Code-F

Test Date : 24/11/2019

ANSWERS

PHYSICS		СН	CHEMISTRY		MATHEMATICS	
1.	(A)	21.	(C, D)	41.	(B, C)	
2.	(B, C)	22.	(A, C, D)	42.	(A, B)	
3.	(A, D)	23.	(D)	43.	(A)	
4.	(B, D)	24.	(A, C, D)	44.	(B, D)	
5.	(B, D)	25.	(B, C, D)	45.	(B, C)	
6.	(D)	26.	(D)	46.	(C)	
7.	(B)	27.	(B)	47.	(D)	
8.	(C)	28.	(A)	48.	(A)	
9.	(A)	29.	(B)	49.	(D)	
10.	(C)	30.	(A)	50.	(A)	
11.	(C)	31.	(B)	51.	(C)	
12.	(A)	32.	(A)	52.	(C)	
13.	(B)	33.	(C)	53.	(A)	
14.	(C)	34.	(B)	54.	(B)	
15.	(B)	35.	(A)	55.	(D)	
16.	$A \rightarrow (R, T)$	36.	$A \to (Q,S)$	56.	$A \rightarrow (P, Q)$	
	$B \rightarrow (S, T)$		$B \to (Q)$		$B \to (P,Q)$	
	$C \rightarrow (Q, S)$		$C \to (R,T)$		$C \to (R,T)$	
	$D \rightarrow (Q, S)$		$D \to (Q)$		$D\to(S,T)$	
17.	$A \rightarrow (P, R)$	37.	$A \to (Q,S)$	57.	$A \rightarrow (P)$	
	$B \rightarrow (P, S)$		B ightarrow (R)		$B \to (Q)$	
	$C \rightarrow (Q, T)$		$C \to (Q,R)$		$C \to (Q,S)$	
	$D \rightarrow (Q, S)$		$D\to(P,T)$		$D \to (R,S)$	
18.	(06)	38.	(06)	58.	(03)	
19.	(01)	39.	(03)	59.	(00)	
20.	(02)	40.	(07)	60.	(09)	

HINTS & SOLUTIONS

PART - I (PHYSICS)

1. Answer (A)

Hint : A balanced wheatstone bridge is formed. Solution :

$$\therefore V_D - V_C = 0$$

$$\therefore R_{eq} = \frac{12 \times 6}{12 + 6} = 4 \Omega$$

$$\therefore I_{battery} = \frac{20}{4} = 5 A$$

$$I_{AD} = \frac{20}{12} = \frac{5}{3} A$$

2. Answer (B, C)

Hint : $\Delta Q = \Delta U + \Delta W$

Solution :

$$Q = \Delta U + \frac{Q}{2} \implies \Delta U = \frac{Q}{2}$$
$$\implies n \times \left(\frac{3R}{2}\right) \cdot \Delta T = \frac{nC\Delta T}{2}$$
$$\implies C = 3R$$
And, $\Delta U = \Delta W$

$$\Rightarrow n\left(\frac{3R}{2}\right) \cdot dT = PdV$$

- $\Rightarrow P^3V = \text{constant}$
- $\Rightarrow P^2 \times T = \text{constant}$

$$\Rightarrow P \propto \frac{1}{\sqrt{T}}$$

3. Answer (A, D)

Hint : Frequency as well as wavelength change. Solution :

$$\lambda_{1} = \lambda_{0} - \frac{V}{5}T \implies \lambda_{1} = \frac{4\lambda_{0}}{5}$$
$$\therefore \quad \lambda_{2} = 2\lambda_{1} = \frac{8\lambda_{0}}{5}$$
and,
$$T' = \frac{\lambda'}{2V + \frac{V}{5}} = \frac{5\lambda'}{11V}$$
$$\therefore \quad f' = \frac{1}{T'} = \frac{11V}{5 \times \left(\frac{8\lambda_{0}}{5}\right)} = \frac{11V}{8f_{0}}$$

4. Answer (B, D) Hint : Particle performs SHM. Solution :

$$E = \frac{Qx}{4\pi\varepsilon_0 (R^2 + x^2)^{\frac{3}{2}}}, \quad x \ll R$$

$$\Rightarrow \quad E = \frac{Qx}{4\pi\varepsilon_0 R^3}$$

$$\therefore \quad \omega = \sqrt{\frac{Qq}{m \times 4\pi\varepsilon_0 R^3}}$$

$$\therefore \quad T = 2\pi \sqrt{\frac{m \times 4\pi\varepsilon_0 R^3}{Qq}} = 4\pi \sqrt{\frac{\pi\varepsilon_0 m R^3}{Qq}}$$

and, $V_{max} = \omega a = \frac{ax}{2} \sqrt{\frac{Qq}{\pi\varepsilon_0 m R^3}}$

5. Answer (B, D)

Hint : *B* and *C* will be in series. Solution :

$$C_{BC} = \frac{2 \times 3}{2 + 3} = \frac{6}{5} \mu F$$

$$\therefore \quad \Delta q_S = \frac{\frac{6}{5}}{\frac{6}{5} + 1} \times 110 = 60 \ \mu C$$

$$\therefore \quad q_A = 110 - 60 = 50 \ \mu C$$

$$V_B = \frac{60}{2} = 30 \text{ V}, \ V_C = \frac{60}{3} = 20 \text{ V}$$

6. Answer (D)

Hint : Two spheres behave as capacitor and then become in parallel finally.

Solution :

 \sim

$$Q_{0} = 4\pi\varepsilon_{0} (2a) \times V$$

$$\therefore \quad i = \frac{V}{R} e^{-\frac{t}{\tau}}, \quad \tau = R \times \left(\frac{C_{1}C_{2}}{C_{1} + C_{2}}\right)$$

$$= R \times \frac{4\pi\varepsilon_{0}a \times 2a}{3a}$$

$$= \frac{8\pi\varepsilon_{0}Ra}{3}$$

$$\therefore \quad i = \frac{V}{R} e^{-\frac{3t}{8\pi\varepsilon_{0}Ra}}$$

7. Answer (B)

Hint : Two spheres behave as capacitor and then become in parallel finally.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Solution :

Final charge on smaller sphere

$$q_{2} = \frac{C_{2}}{C_{1} + C_{2}} \times Q_{0}$$
$$= \frac{4\pi\varepsilon_{0} \times a}{4\pi\varepsilon_{0} (a + 2a)} \times \left[4\pi\varepsilon_{0} \times (2a) \times V\right]$$
$$= \frac{1}{3} \times 8\pi\varepsilon_{0} aV$$

8. Answer (C)

Hint : Two spheres behave as capacitor and then become in parallel finally.

Solution :

Total heat dissipation

$$H = \frac{1}{2} \times \left(\frac{C_1 C_2}{C_1 + C_2}\right) \times V^2$$
$$= \frac{1}{2} \times \frac{2}{3} \times (4\pi\varepsilon_0 a) V^2$$
$$= \frac{4\pi\varepsilon_0 a V^2}{3}$$

9. Answer (A)

Hint : Speed of sound, $V = \sqrt{\frac{\gamma RT}{M}}$

Solution :

$$V = \sqrt{\frac{\gamma RT}{M}}$$

$$\Rightarrow T = \frac{V^2 M}{\gamma R} = \frac{(300)^2 \times (29 \times 10^{-3})}{1.4 \times 8.314}$$

$$\approx 224 \text{ K}$$

- 10. Answer (C)Hint : Put the value of *T*₀.Solution :
 - $:: T = T_0 0.006 h_0$
 - \Rightarrow 273 = 224 0.006 × h_0

$$\Rightarrow$$
 $h_0 = 8170 \text{ m}$

11. Answer (C)

Hint : Put the value of h_0 . **Solution :**

$$P = P_0 \left(1 - \frac{0.006 \times 8170}{273} \right) \frac{29 \times 10^{-3} \times 9.8}{8.31 \times 0.006}$$

= $P_0 \times (0.82)^{5.7}$
= $0.32 P_0$
12. Answer (A)
Hint : $P^{1-\gamma} T^{\gamma}$ = constant
Solution :

$$P_1^{1-\gamma}T_1^{\gamma}=P_2^{1-\gamma}T_2^{\gamma}$$

$$\Rightarrow T_2 = 1000 \times \left(\frac{3}{2}\right)^{\left(\frac{3}{5}-1\right)} = 850 \text{ K}$$

Then, $\frac{P_3}{T_3} = \frac{P_2}{T_2} \Rightarrow T_3 = 425 \text{ K}$
 $\therefore \Delta Q = nC_v \Delta T = 1 \times \left(\frac{3R}{2}\right) \times (850 - 425)$
 $= 5300 \text{ J}$

13. Answer (B)Hint : Use concept of standing wave.Solution :

$$y = y_1 + y_2$$

$$= a \left[\sin \left(\frac{\pi}{2} x - \omega t \right) + \sin \left(\frac{\pi}{2} x + \omega t + \frac{\pi}{3} \right) \right]$$

$$\Rightarrow \quad y = 2a \sin \left(\frac{\pi}{2} x + \frac{\pi}{6} \right) \cdot \cos \left(\cot + \frac{\pi}{6} \right)$$
For nodes, $2a \sin \left(\frac{\pi}{2} x + \frac{\pi}{6} \right) = 0$

$$\Rightarrow \quad \frac{\pi}{2} x + \frac{\pi}{6} = \pi, 2\pi, 3\pi, 4\pi,$$

$$\Rightarrow \quad x = \frac{5}{3}, \frac{11}{3}, \frac{17}{3}, \frac{23}{3}$$

$$\therefore \quad \text{For } 0 \le x \le 6,$$
Number of nodes = 3
14. Answer (C)
Hint : Flux = $\frac{q}{4\pi\varepsilon_0} \times \text{Solid angle} \times 2$

Solution :

$$\phi = \frac{q}{\varepsilon_0} \times \frac{2\pi(1 - \cos\theta)}{4\pi} \times 2$$
$$= \frac{q}{\varepsilon_0} \left(1 - \frac{\ell}{\sqrt{\ell^2 + R^2}} \right) = \frac{q}{\varepsilon_0} \left(1 - \frac{2}{\sqrt{5}} \right)$$

15. Answer (B) Hint : Use KVL and KCL Solution :

:..

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2020 Test - 2A (Paper-2) (Code-F)_(Hints & Solutions)

For R_{AC}

$$\therefore \quad R_{AC} = \frac{3R}{4}$$
$$\therefore \quad \frac{R_{AB}}{R_{AC}} = \frac{7 \times 4}{12 \times 3} = \frac{7}{9}$$

- 16. Answer A(R, T); B(S, T); C(Q, S); D(Q, S) Hint : In isothermal process $\Delta U = 0$ Solution :
 - For A : PV = constant
 - $\Rightarrow \Delta U = 0, \Delta W = \text{positive}$

$$\Rightarrow \Delta Q = \text{positive}$$

For B :
$$P = \frac{pRT}{m} \Rightarrow T = \text{constant}$$

$$\Rightarrow \Delta U = 0, \Delta W = -\text{negative}, \Delta Q = \text{negative}$$

And so on.

Answer A(P, R); B(P, S); C(Q, T); D(Q, S)
 Hint : After earthing, charge on outer surface of outer most plates becomes zero.

Solution :

Before earthing

18. Answer (06)

Hint : Use superposition principle. Solution :

$$E_1 = \frac{Q}{4\pi\varepsilon_0 a^2}$$

19. Answer (01)

Hint : Use Newton's law.

$$\frac{-dT}{dt} = b(T - T_s)$$

$$\Rightarrow \Delta T = (\Delta T)_0 e^{-bt}$$

$$\therefore t_2 = 2t_0$$

$$\therefore n = 1$$

20. Answer (02)

Hint : Reduce it to a finite circuit. Solution :

$$R_{AB} = R_{CD}, \ V_{CD} = \frac{1}{2} V_{AB}$$

... Current gets equally distributed

$$\therefore R_2 = R_{AB}$$

And,
$$R_{AB} = R_1 + \left(\frac{R_2}{2}\right) = R_2$$

$$\Rightarrow \frac{R_2}{R_1} = 2$$

PART - II (CHEMISTRY)

SO.F

21. Answer (C, D) Hint : P is

22. Answer (A, C, D)

is more basic than aniline

Solution :

are less basic than aniline

23. Answer (D)

Solution :

24. Answer (A, C, D)

Hint :

Solution :

Q is slightly basic

P contains fluorine atom

Because of the presence of $-NH_2$ group, Q can give coupling reaction

25. Answer (B, C, D)

Hint : Benzaldehyde is not oxidised by Fehling's reagent.

Solution :

Acetophenone can give iodoform and bromoform.

26. Answer (D)

Hint : Given D-glyceraldehyde is 'R'

Solution :

R as well as D.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2020

Test - 2A (Paper-2) (Code-F)_(Hints & Solutions)

27. Answer (B)

Hint : D and L convention is used for amino acids also

Solution :

- (D) fructose is laevorotatory (I)
- (D) glucose is dextrorotatory(d)
- 28. Answer (A)

Hint : Product obtained after ozonolysis

$$H_{3}CO \xrightarrow{H}_{CH_{3}}CH O = C \xrightarrow{H}_{CH_{3}}CH_{3} \xrightarrow{H}_{CH_{3}}OCH_{3}$$

- Solution :
- C* is L

C[#] is D.

- 29. Answer (B)
- 30. Answer (A)
- 31. Answer (B)

Hint and Solution : Q. Nos. 29 to 31

32. Answer (A)

Hint : Excess of ether and water as solvent will favour $S_N 1$ reaction.

Solution :

33. Answer (C)

Hint :

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Solution :

Solution :

35. Answer (A)

Hint : It is electrophilic substitution reaction.

Solution :

The intermediate formed when ${}^{+}NO_{2}$ attacks at position C-2 is more stable.

36. Answer A(Q, S); B(Q); C(R, T); D(Q)

Hint : LiAIH₄ is a very strong reducing agent can reduce almost functional groups to lower oxidation state, except alkenes and alkynes.

Solution :

NaBH₄ cannot reduce amide into amine

NaBH₄ can reduce only acid halide into alcohol among the given transformation.

37. Answer A(Q, S); B(R); C(Q, R); D(P, T)

Hint :

Solution :

38. Answer (06)

Hint : O, P-substituted Bromo group are more likely to get substituted.

Solution :

The Br group at position 4 is most likely to get substitute and at position 2, is least

39. Answer (03)

Hint :

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2020 Test - 2A (Paper-2) (Code-F)_(Hints & Solutions)

Solution :

Possible Products

40. Answer (07)

Hint :
$$5 \xrightarrow{6} 1 CI$$

 $O_2N \xrightarrow{4} 0 \xrightarrow{3} 2 NO_2$

Solution :

x = 1, y = 2, z = 4

PART - III (MATHEMATICS)

41. Answer (B, C)

Hint : Perpendicularity of two lines.

Solution :

 L_1 and L_2 if they are \perp to a common line $\Rightarrow \lambda = -1$ for two adjacent sides of a square

 $L_1 \perp L_2$

$$\therefore (\lambda^2 + 1) \lambda^2 = 1$$

$$\Rightarrow \lambda^5 + 2\lambda^3 + \lambda - 1 = 0 = f(\lambda)$$

$$\therefore f'(\lambda) = 5\lambda^4 + 6\lambda^2 + 1 = 0$$

 \therefore $f(\lambda) = 0$ has only one real root

42. Answer (A, B)

Hint : Condition of two degree equation (to represent pair of straight line.

Solution :

$$\Delta = 0 \Longrightarrow abc + 2fgh = af^2 + bg^2 + ch^2$$

$$\Rightarrow c = \frac{-10}{9}$$

Also

$$\cos \alpha = \left| \frac{a+b}{\sqrt{\left(a-b\right)^2 + 4h^2}} \right| \Rightarrow \alpha = \cos^{-1}\left(\frac{5}{\sqrt{34}}\right)$$

43. Answer (A)

Hint : Division formula between two points.

Solution :

$$A\left(\frac{ab}{a+b}\left(\frac{1-m}{-m},0\right):B\left(-0,\frac{ab}{a+b}\left(1-m\right)\right)\right)$$

Mid-point of AB is (h, k)

$$\therefore 2h = \frac{ab}{a+b} \frac{(m-1)}{m}; 2k \frac{ab}{a+b} (1-m)$$

$$\therefore \frac{1}{2h} + \frac{1}{2k} = \frac{a+b}{ab}$$

 \Rightarrow ab (x + y) = 2 (a + b) xy is the locus

Let P divides AB in ratio 1:3

$$\therefore P\left(\frac{\frac{3ab}{a+b}\left(1-\frac{1}{m}\right)}{4}, \frac{\frac{ab}{a+b}\left(1-m\right)}{4}\right)$$

 \therefore (*x* + 3*y*)*ab* = 4(*a* + *b*)*xy* is the required locus

44. Answer (B, D)

Hint : Distance between two parallel lines.

Solution :

Distance between two parallel lines = $2\sqrt{5}$

$$\therefore \text{ points on line } \frac{x-1}{\frac{-2}{\sqrt{5}}} = \frac{y+2}{\frac{1}{\sqrt{5}}} = \pm 2\sqrt{5}$$

- \therefore points are (-3, 0) and (5, -4)
- ... Required lines are

$$2x - y + 6 = 0$$
 and $2x - y - 14 = 0$

45. Answer (B, C)

Hint : Translation and Rotation of axes.

Solution :

For
$$f(x,y) = 0$$

new origin=

$$\left(\frac{hf-bh}{ab-h^2},\frac{gf-af}{ab-h^2}\right) \equiv \left(\frac{28}{-14},\frac{42}{-14}\right) \equiv \left(-2,-3\right)$$

For
$$g(x,y) = 0$$

$$\theta = \frac{1}{2} \tan^{-1} \left(\frac{2h}{a-b} \right) = \frac{1}{2} \tan^{-1} \left(\frac{2 \times \sqrt{3}}{2} \right)$$

$$=\frac{1}{2}\times\frac{\pi}{3}=\frac{\pi}{6}$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

46. Answer (C)

Hint : Family of circle with line.

Solution :

Let required circle

$$x^2 + y^2 - 3x + 2y - 4 + \lambda (2x + 5y + 2) = 0$$

$$\therefore C\left(\frac{3-2\lambda}{2}, \frac{-(5\lambda+2)}{2}\right) \text{ satisfy } x+y=11$$

$$\lambda = -3$$

- \therefore Required circle is $x^2 + y^2 9x 13y 10 = 0$
- 47. Answer (D)

Hint : Orthogonal of two circles.

Solution :

Let required circle

 $(x-1)^2 + (y+1)^2 + \lambda(2x+3y+1) = 0$ (i)

Circle with diameter points (0,3) and (-2,-1) is

$$x^2 + y^2 + 2x - 2y - 3 = 0$$
 (ii)

(i) of (ii) intersect orthogonally

$$\therefore \left(2\lambda - 1\right) + -2\left(\frac{3\lambda}{2} + 1\right) = \lambda - 1 \Longrightarrow \lambda = \frac{-3}{2}$$

Required circle is $2x^2 + 2y^2 - 10x - 5y + 1 = 0$ 48. Answer (A)

Hint : Touching concept of line with circle.

Solution :

Let required circle

$$(x^{2} + y^{2} - 4) + \lambda(x + 2y - 4) = 0$$
$$C\left(\frac{-\lambda}{2}, -\lambda\right) = \lambda = \sqrt{\frac{5\lambda^{2}}{4} + 4\lambda + 4}$$

 \therefore it touches line x + 2y - 5 = 0

$$\therefore \left| \frac{\frac{-\lambda}{2} + 2(-\lambda) - 5}{\sqrt{5}} \right| = \sqrt{\frac{5\lambda^2}{4} + 4\lambda + 4}$$

$$\Rightarrow 5(\lambda + 2)^2 = 5\lambda^2 + 16\lambda + 16$$
$$\Rightarrow \lambda = -1$$

$$\therefore \text{ Required circle } x^2 + y^2 - x - 2y = 0$$

49. Answer (D)

Hint : Chord of contact of circle.

Solution :

Equation of C.O.C hx + ky = 8 (i) Also $tk = h + 2t^2$ (ii) $\because (h,k)$ satisfy tangent)

$$\Rightarrow hx + y \frac{(h+2t^2)}{t} - 8 = 0$$
$$\Rightarrow 2(ty-4) + h\left(x + \frac{y}{t}\right) = 0$$

 $\therefore \text{ Line passes through point} \\ y = \frac{4}{t} \text{ and } x = \frac{-y}{t}$

$$\Rightarrow \frac{y}{4} = -\frac{x}{y} \Rightarrow y^2 = -4x$$

50. Answer (A)

Hint : Point of intersection of two curves.

Solution :

Point of intersection of x = -2 and $x^2 + y^2 = 16$

$$\therefore y^2 = 12 \Rightarrow y = \pm 2\sqrt{3}$$
$$\therefore \text{Point}\left(-2, 2\sqrt{3}\right)$$

51. Answer (C)

Hint : Circumcircle of triangle ABC

Solution :

The equation of the circumcircle of $\triangle AQB$ is

 $(x^2 + y^2 - 8) + \lambda(hx + ky - 8) = 0 :: (A = -1)$ due to (0,0) satisfy it

 \therefore Equation is $x^2 + y^2 - hx - ky = 0$

Now centre $\left(\frac{h}{2}, \frac{k}{2}\right)$

$$\therefore$$
 For locus let $x = \frac{h}{2}; y = \frac{k}{2}$

$$h = 2x$$
 and $k = 2y$

 \therefore $tk = h + 2t^2$ \therefore at t = 2

The required locus is 2y = x + 4

52. Answer (C)

Hint : I.T.F. conversion in domain.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2020 Test - 2A (Paper-2) (Code-F)_(Hints & Solutions)

Solution :

Let
$$\sin^{-1}x = \theta \Rightarrow x = \sin \theta$$

Now

$$\cos^{-1} x = \cos^{-1} \left(\sin \theta \right) = \cos^{-1} \left(-\cos \left(\frac{3\pi}{2} - \theta \right) \right)$$
$$= \pi - \cos^{-1} \left(\cos \left(\frac{3\pi}{2} - \theta \right) \right)$$
$$= \pi - \left(\frac{3\pi}{2} - \theta \right) \text{as } \frac{3\pi}{2} - \theta \in (0, \pi)$$
$$= \theta - \frac{\pi}{2} = \sin^{-1} x - \frac{\pi}{2}$$
$$\therefore \sin^{-1} x + \cos^{-1} x = 2\sin^{-1} x - \frac{\pi}{2}$$

53. Answer (A)

Hint : Locus of midpoint of Parallel chords.

Solution :

Let middle point is (h,k)

... Equation of chord in mid-point form is

$$\frac{x}{h} + \frac{y}{k} = 2$$
$$\therefore -\frac{1}{h \times \frac{1}{k}} = m \Longrightarrow k = -mh$$

 \Rightarrow *y* + *mx* = 0 is the required locus

54. Answer (B)

Hint : Condition of common tangent on two curves.

Solution :

$$y = \frac{x}{2} + 2$$
 is tangent on $\frac{x^2}{4} + \frac{y^2}{b^2} = 1$

$$\Rightarrow 4 + 4b^2 = 16 \Rightarrow b^2 + 1 = 4 \Rightarrow b = \pm\sqrt{3}$$

Now tangent at other point is given by -2y = x+4

$$\Rightarrow x + 2y + 4 = 0$$

55. Answer (D)

Hint : Length of latus rectum independency.

56. Answer A(P, Q); B(P, Q); C(R, T); D(S, T) **Hint** : Property of perpendicular normals. **Solution** : Equation of normal at 'p' is $y = -tx + 2at + at^{3}$ Put $y = -2at \Rightarrow x = 4a + at^{2}$ \therefore G (4a + at², -2at) Required locus $y^{2} = 4a (x - 4a)$ $\therefore a = 1$

 $\therefore y^2 = 4(x - 4)$ Now verify each option

57. Answer A(P); B(Q); C(Q, S); D(R, S)Hint : Type of functions concept.Solution :

(A)
$$f(x) = \begin{cases} \left((1)^{1} \right)^{n} x > 0 = 1 , x > 0 \\ \left((-1)^{-1} \right)^{n} x < 0 , x < 0 \end{cases}$$

f(x) is an odd function. f(x) is not bijective

 \therefore f(x) is not one one

(B)
$$f(x) = \frac{x}{e^x - 1} + \frac{x}{2} + 1$$

$$f(x) = \frac{-x}{e^{-x} - 1} - \frac{x}{2} + 1 = x + \frac{x}{e^{x} - 1} - \frac{x}{2} + f(x)$$

 \therefore f(x) is an even function \therefore f(x) is not bijective

(C) $f(-x) = f(x) \therefore f(x)$ is even. f(x) is periodic but time period not define

(D) $f(x) = \max\{\tan x, \cot x\}$. From graph of f(x) it is clear that

f(x) is neither even nor odd

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

$$\therefore f(x+\pi) = \max\{\tan(x+\pi), \cot(x+\pi)\}$$

 $= \max \{ \tan x, \cot x \} f(x) \text{ is periodic with } f(x) \text{ is } periodic with } \pi$

Hint : Graphical solution.

Solution :

From graph it is clear that curves intersect at 3 points

- .: Only 3 solutions
- 59. Answer (00)

Hint : Trigonometric conversion of I.T.F.

Solution :

$$\sin\left(\cos^{-1}\left(\tan\left(\tan^{-1}\left(\sqrt{x^{2}-1}\right)\right)\right)\right)$$
$$=\sin\left(\cos^{-1}\sqrt{x^{2}-1}\right)$$

$$= \sin\left(\sin^{-1}\sqrt{2-x^2}\right) = \sqrt{2-x^2}$$

$$\therefore \text{ Common domain } \left[1,\sqrt{2}\right] \Rightarrow 2-x^2 = 1$$

$$\Rightarrow x^2 + x - 1 = 0 \Rightarrow x = \frac{-1 \pm \sqrt{5}}{2}$$

$$x = \frac{\sqrt{5}-1}{2} \notin \left[1,\sqrt{2}\right]$$

+ **X**

.: No solution exists

60. Answer (09)

Hint : Sum of infinite G.P. Solution :

$$\frac{1}{1-\sin(\cos^{-1}x)} = 2$$

$$\Rightarrow \sin(\cos^{-1}x) = \frac{1}{2}$$

$$\Rightarrow \cos^{-1}x = \frac{\pi}{6} \Rightarrow x = \frac{\sqrt{3}}{2} \Rightarrow 4x^{2} = 3$$

$$\Rightarrow 12x^{2} = 9$$

