All India Aakash Test Series for JEE (Advanced)-2020
 TEST - 2A (Paper-2) - Code-E

Test Date : 24/11/2019

ANSWERS

ANSWERS					
PHYSICS		CHEMISTRY		MATHEMATICS	
1.	(B, D)	21.	(B, C, D)	41.	(B, C)
2.	(B, D)	22.	(A, C, D)	42.	(B, D)
3.	(A, D)	23.	(D)	43.	(A)
4.	(B, C)	24.	(A, C, D)	44.	(A, B)
5.	(A)	25.	(C, D)	45.	(B, C)
6.	(D)	26.	(D)	46.	(C)
7.	(B)	27.	(B)	47.	(D)
8.	(C)	28.	(A)	48.	(A)
9.	(A)		(B)	49.	(D)
10.	(C)	30.	(A)	50.	(A)
11.	(C)	31.	(B)	51.	(C)
12.	(B)	32.	(A)	52.	(D)
13.	(C)		(B)	53.	(B)
14.	(B)	34.	(C)	54.	(A)
15.	(A)	35.	(A)	55.	(C)
16.	$A \rightarrow(P, R)$	36.	$A \rightarrow(Q, S)$	56.	$\mathrm{A} \rightarrow$ (P)
	$B \rightarrow(P, S)$		$B \rightarrow(R)$		$B \rightarrow(Q)$
	$\mathrm{C} \rightarrow(\mathrm{Q}, \mathrm{T})$		$\mathrm{C} \rightarrow(\mathrm{Q}, \mathrm{R})$		$\mathrm{C} \rightarrow(\mathrm{Q}, \mathrm{S})$
	$D \rightarrow(Q, S)$		$\mathrm{D} \rightarrow(\mathrm{P}, \mathrm{T})$		$\mathrm{D} \rightarrow(\mathrm{R}, \mathrm{S})$
17.	$A \rightarrow(R, T)$	37.	$\mathrm{A} \rightarrow(\mathrm{Q}, \mathrm{S})$	57.	$A \rightarrow(P, Q)$
	$B \rightarrow(S, T)$		$B \rightarrow(Q)$		$B \rightarrow(P, Q)$
	$\mathrm{C} \rightarrow(\mathrm{Q}, \mathrm{S})$		$\mathrm{C} \rightarrow(\mathrm{R}, \mathrm{T})$		$C \rightarrow(R, T)$
	$\mathrm{D} \rightarrow(\mathrm{Q}, \mathrm{S})$		$\mathrm{D} \rightarrow(\mathrm{Q})$		$\mathrm{D} \rightarrow(\mathrm{S}, \mathrm{T})$
18.	(02)	38.	(07)	58.	(09)
19.	(01)		(03)	59.	(00)
20.	(06)	40.	(06)	60.	(03)

HINTS \& SOLUTIONS

PART - I (PHYSICS)

1. Answer (B, D)

Hint : B and C will be in series.
Solution :

$$
\begin{aligned}
& C_{B C}=\frac{2 \times 3}{2+3}=\frac{6}{5} \mu \mathrm{~F} \\
& \therefore \quad \Delta q_{S}=\frac{\frac{6}{5}}{\frac{6}{5}+1} \times 110=60 \mu \mathrm{C} \\
& \therefore \quad q_{A}=110-60=50 \mu \mathrm{C} \\
& \quad V_{B}=\frac{60}{2}=30 \mathrm{~V}, V_{C}=\frac{60}{3}=20 \mathrm{~V}
\end{aligned}
$$

2. Answer (B, D)

Hint : Particle performs SHM.

Solution :

$$
\begin{aligned}
& E=\frac{Q x}{4 \pi \varepsilon_{0}\left(R^{2}+x^{2}\right)^{\frac{3}{2}}}, x \ll R \\
& \Rightarrow \quad E=\frac{Q x}{4 \pi \varepsilon_{0} R^{3}} \\
& \therefore \quad \omega=\sqrt{\frac{Q q}{m \times 4 \pi \varepsilon_{0} R^{3}}} \\
& \therefore \quad T=2 \pi \sqrt{\frac{m \times 4 \pi \varepsilon_{0} R^{3}}{Q q}}=4 \pi \sqrt{\frac{\pi \varepsilon_{0} m R^{3}}{Q q}}
\end{aligned}
$$

and, $V_{\max }=\omega a=\frac{a x}{2} \sqrt{\frac{Q q}{\pi \varepsilon_{0} m R^{3}}}$
3. Answer (A, D)

Hint : Frequency as well as wavelength change.

Solution :

$\lambda_{1}=\lambda_{0}-\frac{V}{5} T \Rightarrow \lambda_{1}=\frac{4 \lambda_{0}}{5}$
$\therefore \quad \lambda_{2}=2 \lambda_{1}=\frac{8 \lambda_{0}}{5}$
and, $T^{\prime}=\frac{\lambda^{\prime}}{2 V+\frac{V}{5}}=\frac{5 \lambda^{\prime}}{11 V}$
$\therefore \quad f^{\prime}=\frac{1}{T^{\prime}}=\frac{11 \mathrm{~V}}{5 \times\left(\frac{8 \lambda_{0}}{5}\right)}=\frac{11 \mathrm{~V}}{8 f_{0}}$
4. Answer (B, C)

Hint: $\Delta Q=\Delta U+\Delta W$

Solution :

$$
\begin{aligned}
& Q=\Delta U+\frac{Q}{2} \Rightarrow \Delta U=\frac{Q}{2} \\
& \Rightarrow \quad n \times\left(\frac{3 R}{2}\right) \cdot \Delta T=\frac{n C \Delta T}{2} \\
& \Rightarrow C=3 R \\
& \text { And, } \Delta U=\Delta W \\
& \Rightarrow \quad n\left(\frac{3 R}{2}\right) \cdot d T=P d V \\
& \Rightarrow \quad P^{3} V=\text { constant } \\
& \Rightarrow \quad P^{2} \times T=\text { constant } \\
& \Rightarrow P \propto \frac{1}{\sqrt{T}}
\end{aligned}
$$

5. Answer (A)

Hint : A balanced wheatstone bridge is formed.

Solution :

$\therefore \quad V_{D}-V_{C}=0$
$\therefore \quad R_{\text {eq }}=\frac{12 \times 6}{12+6}=4 \Omega$
$\therefore \quad I_{\text {battery }}=\frac{20}{4}=5 \mathrm{~A}$
$I_{A D}=\frac{20}{12}=\frac{5}{3} \mathrm{~A}$
6. Answer (D)

Hint : Two spheres behave as capacitor and then become in parallel finally.

Solution :

$$
\begin{aligned}
& Q_{0}=4 \pi \varepsilon_{0}(2 a) \times V \\
& \begin{aligned}
\therefore \quad i=\frac{V}{R} e^{-\frac{t}{\tau}}, \quad \tau & =R \times\left(\frac{C_{1} C_{2}}{C_{1}+C_{2}}\right) \\
& =R \times \frac{4 \pi \varepsilon_{0} a \times 2 a}{3 a} \\
& =\frac{8 \pi \varepsilon_{0} R a}{3} \\
\therefore \quad i & =\frac{V}{R} e^{-\frac{3 t}{8 \pi \varepsilon_{0} R a}}
\end{aligned}
\end{aligned}
$$

7. Answer (B)

Hint : Two spheres behave as capacitor and then become in parallel finally.

Solution :

Final charge on smaller sphere

$$
\begin{aligned}
q_{2} & =\frac{C_{2}}{C_{1}+C_{2}} \times Q_{0} \\
& =\frac{4 \pi \varepsilon_{0} \times a}{4 \pi \varepsilon_{0}(a+2 a)} \times\left[4 \pi \varepsilon_{0} \times(2 a) \times V\right] \\
& =\frac{1}{3} \times 8 \pi \varepsilon_{0} a V
\end{aligned}
$$

8. Answer (C)

Hint : Two spheres behave as capacitor and then become in parallel finally.

Solution :

Total heat dissipation

$$
\begin{aligned}
H & =\frac{1}{2} \times\left(\frac{C_{1} C_{2}}{C_{1}+C_{2}}\right) \times V^{2} \\
& =\frac{1}{2} \times \frac{2}{3} \times\left(4 \pi \varepsilon_{0} a\right) V^{2} \\
& =\frac{4 \pi \varepsilon_{0} a V^{2}}{3}
\end{aligned}
$$

9. Answer (A)

Hint : Speed of sound, $V=\sqrt{\frac{\gamma R T}{M}}$

Solution :

$V=\sqrt{\frac{\gamma R T}{M}}$
$\Rightarrow \quad T=\frac{V^{2} M}{\gamma R}=\frac{(300)^{2} \times\left(29 \times 10^{-3}\right)}{1.4 \times 8.314}$

$$
\simeq 224 \mathrm{~K}
$$

10. Answer (C)

Hint : Put the value of T_{0}.

Solution :

$\because \quad T=T_{0}-0.006 h_{0}$
$\Rightarrow 273=224-0.006 \times h_{0}$
$\Rightarrow h_{0}=8170 \mathrm{~m}$
11. Answer (C)

Hint: Put the value of h_{0}.

Solution :

$$
\begin{aligned}
P & =P_{0}\left(1-\frac{0.006 \times 8170}{273}\right) \frac{29 \times 10^{-3} \times 9.8}{8.31 \times 0.006} \\
& =P_{0} \times(0.82)^{5.7} \\
& =0.32 P_{0}
\end{aligned}
$$

12. Answer (B)

Hint : Use KVL and KCL

Solution :

For $R_{A B}$

$\therefore \quad R_{A B}=\frac{7 R}{12}$
For $R_{A C}$

$\therefore \quad R_{A C}=\frac{3 R}{4}$
$\therefore \quad \frac{R_{A B}}{R_{A C}}=\frac{7 \times 4}{12 \times 3}=\frac{7}{9}$

13. Answer (C)

Hint: Flux $=\frac{q}{4 \pi \varepsilon_{0}} \times$ Solid angle $\times 2$

Solution :

$$
\begin{aligned}
\phi & =\frac{q}{\varepsilon_{0}} \times \frac{2 \pi(1-\cos \theta)}{4 \pi} \times 2 \\
& =\frac{q}{\varepsilon_{0}}\left(1-\frac{\ell}{\sqrt{\ell^{2}+R^{2}}}\right) \\
& =\frac{q}{\varepsilon_{0}}\left(1-\frac{2}{\sqrt{5}}\right)
\end{aligned}
$$

14. Answer (B)

Hint : Use concept of standing wave.

Solution :

$y=y_{1}+y_{2}$

$$
\begin{aligned}
& =a\left[\sin \left(\frac{\pi}{2} x-\omega t\right)+\sin \left(\frac{\pi}{2} x+\omega t+\frac{\pi}{3}\right)\right] \\
\Rightarrow \quad y & =2 a \sin \left(\frac{\pi}{2} x+\frac{\pi}{6}\right) \cdot \cos \left(\cot +\frac{\pi}{6}\right)
\end{aligned}
$$

For nodes, $2 a \sin \left(\frac{\pi}{2} x+\frac{\pi}{6}\right)=0$
$\Rightarrow \quad \frac{\pi}{2} x+\frac{\pi}{6}=\pi, 2 \pi, 3 \pi, 4 \pi, \ldots$.
$\Rightarrow \quad x=\frac{5}{3}, \frac{11}{3}, \frac{17}{3}, \frac{23}{3}$
\therefore For $0 \leq x \leq 6$,
Number of nodes $=3$
15. Answer (A)

Hint: $P^{1-\gamma} T^{\gamma}=$ constant

Solution :

$P_{1}^{1-\gamma} T_{1}^{\gamma}=P_{2}^{1-\gamma} T_{2}^{\gamma}$
$\Rightarrow \quad T_{2}=1000 \times\left(\frac{3}{2}\right)^{\left(\frac{3}{5}-1\right)}=850 \mathrm{~K}$
Then, $\frac{P_{3}}{T_{3}}=\frac{P_{2}}{T_{2}} \Rightarrow T_{3}=425 \mathrm{~K}$

$$
\begin{aligned}
\therefore \quad \Delta Q=n C_{v} \Delta T & =1 \times\left(\frac{3 R}{2}\right) \times(850-425) \\
& =5300 \mathrm{~J}
\end{aligned}
$$

16. Answer $A(P, R) ; B(P, S) ; C(Q, T) ; D(Q, S)$

Hint : After earthing, charge on outer surface of outer most plates becomes zero.

Solution :

Before earthing

After earthing

$V_{A B}=\frac{Q d}{\varepsilon_{0} A}, V_{B C}=\frac{3 Q d}{\varepsilon_{0} A}, V_{C D}=0, V_{D E}=\frac{3 Q d}{\varepsilon_{0} A}$
17. Answer $A(R, T) ; B(S, T) ; C(Q, S) ; D(Q, S)$

Hint : In isothermal process $\Delta U=0$

Solution :

For A : PV = constant
$\Rightarrow \Delta U=0, \Delta W=$ positive
$\Rightarrow \Delta Q=$ positive
For $\mathrm{B}: P=\frac{p R T}{m} \Rightarrow T=$ constant
$\Rightarrow \Delta U=0, \Delta W=-$ negative, $\Delta Q=$ negative
And so on.
18. Answer (02)

Hint : Reduce it to a finite circuit.

Solution :

$R_{A B}=R_{C D}, V_{C D}=\frac{1}{2} V_{A B}$
$\therefore \quad$ Current gets equally distributed
$\therefore \quad R_{2}=R_{A B}$
And, $R_{A B}=R_{1}+\left(\frac{R_{2}}{2}\right)=R_{2}$
$\Rightarrow \frac{R_{2}}{R_{1}}=2$
19. Answer (01)

Hint : Use Newton's law.
Solution :

$$
\begin{aligned}
& \frac{-d T}{d t}=b\left(T-T_{s}\right) \\
& \Rightarrow \quad \Delta T=(\Delta T)_{0} e^{-b t} \\
& \therefore \quad t_{2}=2 t_{0} \\
& \therefore \quad n=1
\end{aligned}
$$

20. Answer (06)

Hint : Use superposition principle.
Solution :
$E_{1}=\frac{Q}{4 \pi \varepsilon_{0} a^{2}}$

$\therefore \quad E_{\text {net }}=3 \times\left(E_{1} \cos \theta\right)=3 \times \frac{Q}{4 \pi \varepsilon_{0} a^{2}} \times \sqrt{\frac{2}{3}}$

$$
=\frac{Q \sqrt{6}}{4 \pi \varepsilon_{0} a^{2}}
$$

PART - II (CHEMISTRY)

21. Answer (B, C, D)

Hint : Benzaldehyde is not oxidised by Fehling's reagent.
Solution :
Acetophenone can give iodoform and bromoform.
22. Answer (A, C, D)

Hint :

2. $\begin{aligned} & \text { 2. } \mathrm{NI} \\ & \text { 2 }\end{aligned}$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Solution :
Q is

26. Answer (D)

Hint : Given D-glyceraldehyde is 'R'

Solution :

R as well as D.
27. Answer (B)

Hint : D and L convention is used for amino acids also

Solution :
(D) fructose is laevorotatory (I)
(D) glucose is dextrorotatory(d)
28. Answer (A)

Hint : Product obtained after ozonolysis

Solution :
C^{*} is L
$C^{\#}$ is D.
29. Answer (B)
30. Answer (A)
31. Answer (B)

Hint and Solution : Q. Nos. 29 to 31

(B)

Solution :

$\mathrm{CH}_{2} \mathrm{O}$ (excess)
32. Answer (A)

Hint : It is electrophilic substitution reaction.

Solution :

The intermediate formed when ${ }^{+} \mathrm{NO}_{2}$ attacks at position C-2 is more stable.
33. Answer (B)

Hint :

Solution :

34. Answer (C)

Hint :

Solution :

35. Answer (A)

Hint : Excess of ether and water as solvent will favour $S_{N} 1$ reaction.

Solution :

36. Answer A(Q, S); B(R); C(Q, R); D(P, T)

Hint :

Solution :

37. Answer $A(Q, S) ; B(Q) ; C(R, T) ; D(Q)$

Hint : LiAlH_{4} is a very strong reducing agent can reduce almost functional groups to lower oxidation state, except alkenes and alkynes.

Solution :

NaBH_{4} cannot reduce amide into amine
NaBH_{4} can reduce only acid halide into alcohol among the given transformation.
38. Answer (07)

Hint :

Solution :

$x=1, y=2, z=4$
39. Answer (03)

Hint :

Solution :

Possible Products
40. Answer (06)

Hint: O, P-substituted Bromo group are more likely to get substituted.

Solution :

The Br group at position 4 is most likely to get substitute and at position 2 , is least

PART - III (MATHEMATICS)

41. Answer (B, C)

Hint : Translation and Rotation of axes.

Solution :

For $f(x, y)=0$
new origin=
$\left(\frac{h f-b h}{a b-h^{2}}, \frac{g f-a f}{a b-h^{2}}\right) \equiv\left(\frac{28}{-14}, \frac{42}{-14}\right) \equiv(-2,-3)$
For $g(x, y)=0$
$\theta=\frac{1}{2} \tan ^{-1}\left(\frac{2 h}{a-b}\right)=\frac{1}{2} \tan ^{-1}\left(\frac{2 \times \sqrt{3}}{2}\right)$
$=\frac{1}{2} \times \frac{\pi}{3}=\frac{\pi}{6}$
42. Answer (B, D)

Hint : Distance between two parallel lines.

Solution :

Distance between two parallel lines $=2 \sqrt{5}$
\therefore points on line $\frac{x-1}{-2}=\frac{y+2}{1}= \pm 2 \sqrt{5}$

$$
\overline{\sqrt{5}} \quad \overline{\sqrt{5}}
$$

\therefore points are $(-3,0)$ and $(5,-4)$
\therefore Required lines are

$$
2 x-y+6=0 \text { and } 2 x-y-14=0
$$

43. Answer (A)

Hint : Division formula between two points.

Solution :

$$
A\left(\frac{a b}{a+b}\left(\frac{1-m}{-m}, 0\right): B\left(-0, \frac{a b}{a+b}(1-m)\right)\right.
$$

Mid-point of $A B$ is (h, k)
$\therefore 2 h=\frac{a b}{a+b} \frac{(m-1)}{m} ; 2 k \frac{a b}{a+b}(1-m)$
$\therefore \frac{1}{2 h}+\frac{1}{2 k}=\frac{a+b}{a b}$
$\Rightarrow \mathrm{ab}(x+y)=2(a+b) x y$ is the locus

Let P divides $A B$ in ratio $1: 3$
$\therefore P\left(\frac{\frac{3 a b}{a+b}\left(1-\frac{1}{m}\right)}{4}, \frac{\frac{a b}{a+b}(1-m)}{4}\right)$
$\therefore(x+3 y) a b \equiv 4(a+b) x y$ is the required locus
44. Answer (A, B)

Hint : Condition of two degree equation (to represent pair of straight line.

Solution :

$\Delta=0 \Rightarrow a b c+2 f g h=a f^{2}+b g^{2}+c h^{2}$
$\Rightarrow c=\frac{-10}{9}$
Also
$\cos \alpha=\left|\frac{a+b}{\sqrt{(a-b)^{2}+4 h^{2}}}\right| \Rightarrow \alpha=\cos ^{-1}\left(\frac{5}{\sqrt{34}}\right)$
45. Answer (B, C)

Hint : Perpendicularity of two lines.

Solution :

L_{1} and L_{2} if they are \perp to a common line $\Rightarrow \lambda=-1$ for two adjacent sides of a square
$L_{1} \perp L_{2}$
$\therefore\left(\lambda^{2}+1\right) \lambda^{2}=1$
$\Rightarrow \lambda^{5}+2 \lambda^{3}+\lambda-1=0=f(\lambda)$
$\therefore f^{\prime}(\lambda)=5 \lambda^{4}+6 \lambda^{2}+1=0$
$\therefore f(\lambda)=0$ has only one real root
46. Answer (C)

Hint : Family of circle with line.

Solution :

Let required circle
$x^{2}+y^{2}-3 x+2 y-4+\lambda(2 x+5 y+2)=0$
$\therefore C\left(\frac{3-2 \lambda}{2}, \frac{-(5 \lambda+2)}{2}\right)$ satisfy $x+y=11$
$\therefore \lambda=-3$
\therefore Required circle is $x^{2}+y^{2}-9 x-13 y-10=0$
47. Answer (D)

Hint : Orthogonal of two circles.

Solution :

Let required circle
$(x-1)^{2}+(y+1)^{2}+\lambda(2 x+3 y+1)=0$
Circle with diameter points $(0,3)$ and $(-2,-1)$ is
$x^{2}+y^{2}+2 x-2 y-3=0$
(i) of (ii) intersect orthogonally
$\therefore(2 \lambda-1)+-2\left(\frac{3 \lambda}{2}+1\right)=\lambda-1 \Rightarrow \lambda=\frac{-3}{2}$
Required circle is $2 x^{2}+2 y^{2}-10 x-5 y+1=0$
48. Answer (A)

Hint : Touching concept of line with circle.

Solution :

Let required circle
$\left(x^{2}+y^{2}-4\right)+\lambda(x+2 y-4)=0$
$C\left(\frac{-\lambda}{2},-\lambda\right)=\lambda=\sqrt{\frac{5 \lambda^{2}}{4}+4 \lambda+4}$
\because it touches line $x+2 y-5=0$

$$
\begin{aligned}
& \therefore\left|\frac{\frac{-\lambda}{2}+2(-\lambda)-5}{\sqrt{5}}\right|=\sqrt{\frac{5 \lambda^{2}}{4}+4 \lambda+4} \\
& \Rightarrow 5(\lambda+2)^{2}=5 \lambda^{2}+16 \lambda+16 \\
& \Rightarrow \lambda=-1
\end{aligned}
$$

\therefore Required circle $x^{2}+y^{2}-x-2 y=0$
49. Answer (D)

Hint : Chord of contact of circle.

Solution :

Equation of C.O.C $h x+k y=8$
Also $t k=h+2 t^{2}$ (ii) $\because(h, k)$ satisfy tangent)
$\Rightarrow h x+y \frac{\left(h+2 t^{2}\right)}{t}-8=0$
$\Rightarrow 2(t y-4)+h\left(x+\frac{y}{t}\right)=0$
$\therefore \quad$ Line passes through point
$y=\frac{4}{t}$ and $x=\frac{-y}{t}$
$\Rightarrow \frac{y}{4}=-\frac{x}{y} \Rightarrow y^{2}=-4 x$
50. Answer (A)

Hint: Point of intersection of two curves.

Solution :

Point of intersection of $x=-2$ and $x^{2}+y^{2}=16$
$\therefore y^{2}=12 \Rightarrow y= \pm 2 \sqrt{3}$
\therefore Point $(-2,2 \sqrt{3})$
51. Answer (C)

Hint : Circumcircle of triangle $A B C$

Solution :

The equation of the circumcircle of $\triangle A Q B$ is
$\left(x^{2}+y^{2}-8\right)+\lambda(h x+k y-8)=0 \because(\mathrm{~A}=-1)$ due to $(0,0)$ satisfy it
\therefore Equation is $x^{2}+y^{2}-h x-k y=0$
Now centre $\left(\frac{h}{2}, \frac{k}{2}\right)$
\therefore For locus let $x=\frac{h}{2} ; y=\frac{k}{2}$
$h=2 x$ and $k=2 y$
$\because t k=h+2 t^{2} \therefore$ at $t=2$
The required locus is $2 y=x+4$
52. Answer (D)

Hint : Length of latus rectum independency.

Solution :

$\theta=2 \tan ^{-1} 2$
$\because \sqrt{3}<2<\sqrt{2}+1$
$\frac{\pi}{3}<\tan ^{-1} 2<\frac{3 \pi}{8}$
$\Rightarrow \frac{2 \pi}{3}<\theta<\frac{3 \pi}{-4}$
53. Answer (B)

Hint : Condition of common tangent on two curves.

Solution :

$y=\frac{x}{2}+2$ is tangent on $\frac{x^{2}}{4}+\frac{y^{2}}{b^{2}}=1$
$\Rightarrow 4+4 b^{2}=16 \Rightarrow b^{2}+1=4 \Rightarrow b= \pm \sqrt{3}$
Now tangent at other point is given by $-2 y=x+4$
$\Rightarrow x+2 y+4=0$
54. Answer (A)

Hint : Locus of midpoint of Parallel chords.

Solution :

Let middle point is (h, k)
$\therefore \quad$ Equation of chord in mid-point form is
$\frac{x}{h}+\frac{y}{k}=2$
$\therefore-\frac{1}{h \times \frac{1}{k}}=m \Rightarrow k=-m h$
$\Rightarrow y+m x=0$ is the required locus
55. Answer (C)

Hint : I.T.F. conversion in domain.

Solution :

Let $\sin ^{-1} x=\theta \Rightarrow x=\sin \theta$
Now

$$
\begin{aligned}
& \cos ^{-1} x=\cos ^{-1}(\sin \theta)=\cos ^{-1}\left(-\cos \left(\frac{3 \pi}{2}-\theta\right)\right) \\
& =\pi-\cos ^{-1}\left(\cos \left(\frac{3 \pi}{2}-\theta\right)\right) \\
& =\pi-\left(\frac{3 \pi}{2}-\theta\right) \text { as } \frac{3 \pi}{2}-\theta \in(0, \pi) \\
& =\theta-\frac{\pi}{2}=\sin ^{-1} x-\frac{\pi}{2} \\
& \therefore \sin ^{-1} x+\cos ^{-1} x=2 \sin ^{-1} x-\frac{\pi}{2}
\end{aligned}
$$

56. Answer $A(P) ; B(Q) ; C(Q, S) ; D(R, S)$

Hint : Type of functions concept.

Solution :

(A) $f(x)= \begin{cases}\left((1)^{1}\right)^{n} x>0=1 & , x>0 \\ \left((-1)^{-1}\right)^{n} x<0 & , x<0\end{cases}$
$f(x)$ is an odd function. $f(x)$ is not bijective
$\because f(x)$ is not one one
(B) $f(x)=\frac{x}{e^{x}-1}+\frac{x}{2}+1$
$f(x)=\frac{-x}{e^{-x}-1}-\frac{x}{2}+1=x+\frac{x}{e^{x}-1}-\frac{x}{2}+f(x)$
$\therefore f(x)$ is an even function $\because f(x)$ is not bijective
(C) $f(-x)=f(x) \therefore f(x)$ is even. $f(x)$ is periodic but time period not define
(D) $f(x)=\max \{\tan x, \cot x\}$. From graph of $f(x)$ it is clear that
$f(x)$ is neither even nor odd
$\because f(x+\pi)=\max \{\tan (x+\pi), \cot (x+\pi)\}$
$=\max \{\tan x, \cot x\} f(x)$ is periodic with $\mathrm{f}(\mathrm{x})$ is periodic with π
57. Answer $A(P, Q) ; B(P, Q) ; C(R, T) ; D(S, T)$

Hint : Property of perpendicular normals.

Solution :

Equation of normal at ' p ' is
$y=-t x+2 a t+a t^{3}$
Put $y=-2 a t \Rightarrow x=4 a+a t^{2}$
$\therefore G\left(4 a+a t^{2},-2 a t\right)$
Required locus $y^{2}=4 a(x-4 a)$

$$
\because a=1
$$

$\therefore y^{2}=4(x-4)$
Now verify each option
58. Answer (09)

Hint : Sum of infinite G.P.

Solution :

$$
\begin{aligned}
& \frac{1}{1-\sin \left(\cos ^{-1} x\right)}=2 \\
& \Rightarrow \sin \left(\cos ^{-1} x\right)=\frac{1}{2} \\
& \Rightarrow \cos ^{-1} x=\frac{\pi}{6} \Rightarrow x=\frac{\sqrt{3}}{2} \Rightarrow 4 x^{2}=3 \\
& \Rightarrow 12 x^{2}=9
\end{aligned}
$$

59. Answer (00)

Hint : Trigonometric conversion of I.T.F.

Solution :

$$
\begin{aligned}
& \sin \left(\cos ^{-1}\left(\tan \left(\tan ^{-1}\left(\sqrt{x^{2}-1}\right)\right)\right)\right. \\
& =\sin \left(\cos ^{-1} \sqrt{x^{2}-1}\right) \\
& =\sin \left(\sin ^{-1} \sqrt{2-x^{2}}\right)=\sqrt{2-x^{2}} \\
& \therefore \text { Common domain }[1, \sqrt{2}] \Rightarrow 2-x^{2}=1+x \\
& \Rightarrow x^{2}+x-1=0 \Rightarrow x=\frac{-1 \pm \sqrt{5}}{2} \\
& x=\frac{\sqrt{5}-1}{2} \notin[1, \sqrt{2}]
\end{aligned}
$$

\therefore No solution exists
60. Answer (03)

Hint : Graphical solution.

Solution :

From graph it is clear that curves intersect at 3 points
\therefore Only 3 solutions

All India Aakash Test Series for JEE (Advanced)-2020
 TEST - 2A (Paper-2) - Code-F

Test Date : 24/11/2019

ANSWERS

PHYSICS

1. (A)
2. (B, C)
3. (A, D)
4. (B, D)
5. (B, D)
6. (D)
7. (B)
8. (C)
9. (A)
10. (C)
11. (C)
12. (A)
13. (B)
)
14. (C)
15. (B)
16. $\quad A \rightarrow(R, T)$
$B \rightarrow(S, T)$
$\mathrm{C} \rightarrow(\mathrm{Q}, \mathrm{S})$
$D \rightarrow(Q, S)$
17. $\quad A \rightarrow(P, R)$
$B \rightarrow(P, S)$
$C \rightarrow(Q, T)$
$D \rightarrow(Q, S)$
18. (06)
19. (01)
20. (02)
21. (06)

CHEMISTRY

21. (C, D)
22. (A, C, D)
23. (D)
24. (A, C, D)
25. (B, C, D)
26. (D)
27. (B)
28. (A)
29. (B)
30. (A)
31. (B)
32. (A)
33. (C)
34. (B)
35. (A)
36. $\quad A \rightarrow(Q, S)$
$B \rightarrow(Q)$
$C \rightarrow(R, T)$
$\mathrm{D} \rightarrow(\mathrm{Q})$
37. $\quad A \rightarrow(Q, S)$
$B \rightarrow(R)$
$\mathrm{C} \rightarrow(\mathrm{Q}, \mathrm{R})$
$D \rightarrow(P, T)$
38. (03)
39. (07)
40. (03)

MATHEMATICS
41. (B, C)
42. (A, B)
43. (A)
44. (B, D)
45. (B, C)
46. (C)
47. (D)
48. (A)
49. (D)
50. (A)
51. (C)
52. (C)
53. (A)
54. (B)
55. (D)
56. $\quad A \rightarrow(P, Q)$
$B \rightarrow(P, Q)$
$C \rightarrow(R, T)$
$\mathrm{D} \rightarrow(\mathrm{S}, \mathrm{T})$
57. $\quad A \rightarrow(P)$
$B \rightarrow(Q)$
$C \rightarrow(Q, S)$
$\mathrm{D} \rightarrow(\mathrm{R}, \mathrm{S})$
59. (00)
60. (09)

HINTS \& SOLUTIONS

PART - I (PHYSICS)

1. Answer (A)

Hint : A balanced wheatstone bridge is formed.

Solution :

$\therefore \quad V_{D}-V_{C}=0$
$\therefore \quad R_{\text {eq }}=\frac{12 \times 6}{12+6}=4 \Omega$
$\therefore \quad l_{\text {battery }}=\frac{20}{4}=5 \mathrm{~A}$
$I_{A D}=\frac{20}{12}=\frac{5}{3} \mathrm{~A}$
2. Answer (B, C)

Hint: $\Delta Q=\Delta U+\Delta W$

Solution :

$$
\begin{aligned}
& Q=\Delta U+\frac{Q}{2} \Rightarrow \Delta U=\frac{Q}{2} \\
& \Rightarrow n \times\left(\frac{3 R}{2}\right) \cdot \Delta T=\frac{n C \Delta T}{2} \\
& \Rightarrow C=3 R \\
& \text { And, } \Delta U=\Delta W \\
& \Rightarrow n\left(\frac{3 R}{2}\right) \cdot d T=P d V \\
& \Rightarrow P^{3} V=\text { constant } \\
& \Rightarrow P^{2} \times T=\text { constant } \\
& \Rightarrow P \propto \frac{1}{\sqrt{T}}
\end{aligned}
$$

3. Answer (A, D)

Hint : Frequency as well as wavelength change.
Solution :
$\lambda_{1}=\lambda_{0}-\frac{V}{5} T \Rightarrow \lambda_{1}=\frac{4 \lambda_{0}}{5}$
$\therefore \quad \lambda_{2}=2 \lambda_{1}=\frac{8 \lambda_{0}}{5}$
and, $T^{\prime}=\frac{\lambda^{\prime}}{2 V+\frac{V}{5}}=\frac{5 \lambda^{\prime}}{11 V}$
$\therefore \quad f^{\prime}=\frac{1}{T^{\prime}}=\frac{11 \mathrm{~V}}{5 \times\left(\frac{8 \lambda_{0}}{5}\right)}=\frac{11 \mathrm{~V}}{8 f_{0}}$
4. Answer (B, D)

Hint : Particle performs SHM.

Solution :

$$
\begin{aligned}
& E=\frac{Q x}{4 \pi \varepsilon_{0}\left(R^{2}+x^{2}\right)^{\frac{3}{2}}}, x \ll R \\
& \Rightarrow \quad E=\frac{Q x}{4 \pi \varepsilon_{0} R^{3}} \\
& \therefore \quad \omega=\sqrt{\frac{Q q}{m \times 4 \pi \varepsilon_{0} R^{3}}} \\
& \therefore \quad T=2 \pi \sqrt{\frac{m \times 4 \pi \varepsilon_{0} R^{3}}{Q q}}=4 \pi \sqrt{\frac{\pi \varepsilon_{0} m R^{3}}{Q q}} \\
& \text { and, } V_{\max }=\omega a=\frac{a x}{2} \sqrt{\frac{Q q}{\pi \varepsilon_{0} m R^{3}}}
\end{aligned}
$$

5. Answer (B, D)

Hint : B and C will be in series.

Solution :

$$
\begin{aligned}
& C_{B C}=\frac{2 \times 3}{2+3}=\frac{6}{5} \mu \mathrm{~F} \\
& \therefore \quad \Delta q_{S}=\frac{\frac{6}{5}}{\frac{6}{5}+1} \times 110=60 \mu \mathrm{C} \\
& \therefore \quad q_{A}=110-60=50 \mu \mathrm{C} \\
& \quad V_{B}=\frac{60}{2}=30 \mathrm{~V}, V_{C}=\frac{60}{3}=20 \mathrm{~V}
\end{aligned}
$$

6. Answer (D)

Hint : Two spheres behave as capacitor and then become in parallel finally.

Solution :

$$
\begin{aligned}
& Q_{0}=4 \pi \varepsilon_{0}(2 a) \times V \\
& \therefore \quad i=\frac{V}{R} e^{-\frac{t}{\tau}}, \quad \tau=R \times\left(\frac{C_{1} C_{2}}{C_{1}+C_{2}}\right) \\
& =R \times \frac{4 \pi \varepsilon_{0} a \times 2 a}{3 a} \\
& =\frac{8 \pi \varepsilon_{0} R a}{3} \\
& \therefore \quad i=\frac{V}{R} e^{-\frac{3 t}{8 \pi \varepsilon_{0} R a}}
\end{aligned}
$$

7. Answer (B)

Hint : Two spheres behave as capacitor and then become in parallel finally.

Solution :
Final charge on smaller sphere

$$
\begin{aligned}
q_{2} & =\frac{C_{2}}{C_{1}+C_{2}} \times Q_{0} \\
& =\frac{4 \pi \varepsilon_{0} \times a}{4 \pi \varepsilon_{0}(a+2 a)} \times\left[4 \pi \varepsilon_{0} \times(2 a) \times V\right] \\
& =\frac{1}{3} \times 8 \pi \varepsilon_{0} a V
\end{aligned}
$$

8. Answer (C)

Hint : Two spheres behave as capacitor and then become in parallel finally.

Solution :

Total heat dissipation

$$
\begin{aligned}
H & =\frac{1}{2} \times\left(\frac{C_{1} C_{2}}{C_{1}+C_{2}}\right) \times V^{2} \\
& =\frac{1}{2} \times \frac{2}{3} \times\left(4 \pi \varepsilon_{0} a\right) V^{2} \\
& =\frac{4 \pi \varepsilon_{0} a V^{2}}{3}
\end{aligned}
$$

9. Answer (A)

Hint : Speed of sound, $V=\sqrt{\frac{\gamma R T}{M}}$

Solution :

$V=\sqrt{\frac{\gamma R T}{M}}$
$\Rightarrow \quad T=\frac{V^{2} M}{\gamma R}=\frac{(300)^{2} \times\left(29 \times 10^{-3}\right)}{1.4 \times 8.314}$

$$
\simeq 224 \mathrm{~K}
$$

10. Answer (C)

Hint : Put the value of T_{0}.

Solution :

$\because T=T_{0}-0.006 h_{0}$
$\Rightarrow 273=224-0.006 \times h_{0}$
$\Rightarrow h_{0}=8170 \mathrm{~m}$
11. Answer (C)

Hint : Put the value of h_{0}.

Solution :

$$
\begin{aligned}
P & =P_{0}\left(1-\frac{0.006 \times 8170}{273}\right) \frac{29 \times 10^{-3} \times 9.8}{8.31 \times 0.006} \\
& =P_{0} \times(0.82)^{5.7} \\
& =0.32 P_{0}
\end{aligned}
$$

12. Answer (A)

Hint: $P^{1-\gamma} T^{\gamma}=$ constant

Solution :

$P_{1}^{1-\gamma} T_{1}^{\gamma}=P_{2}^{1-\gamma} T_{2}^{\gamma}$
$\Rightarrow T_{2}=1000 \times\left(\frac{3}{2}\right)^{\left(\frac{3}{5}-1\right)}=850 \mathrm{~K}$
Then, $\frac{P_{3}}{T_{3}}=\frac{P_{2}}{T_{2}} \Rightarrow T_{3}=425 \mathrm{~K}$
$\therefore \quad \Delta Q=n C_{v} \Delta T=1 \times\left(\frac{3 R}{2}\right) \times(850-425)$

$$
=5300 \mathrm{~J}
$$

13. Answer (B)

Hint : Use concept of standing wave.
Solution :

$$
\begin{aligned}
y=y_{1} & +y_{2} \\
& =a\left[\sin \left(\frac{\pi}{2} x-\omega t\right)+\sin \left(\frac{\pi}{2} x+\omega t+\frac{\pi}{3}\right)\right] \\
\Rightarrow y & =2 a \sin \left(\frac{\pi}{2} x+\frac{\pi}{6}\right) \cdot \cos \left(\cot +\frac{\pi}{6}\right)
\end{aligned}
$$

For nodes, $2 a \sin \left(\frac{\pi}{2} x+\frac{\pi}{6}\right)=0$
$\Rightarrow \quad \frac{\pi}{2} x+\frac{\pi}{6}=\pi, 2 \pi, 3 \pi, 4 \pi, \ldots$.
$\Rightarrow \quad x=\frac{5}{3}, \frac{11}{3}, \frac{17}{3}, \frac{23}{3}$
\therefore For $0 \leq x \leq 6$,
Number of nodes $=3$
14. Answer (C)

Hint: Flux $=\frac{q}{4 \pi \varepsilon_{0}} \times$ Solid angle $\times 2$

Solution :

$$
\begin{aligned}
\phi & =\frac{q}{\varepsilon_{0}} \times \frac{2 \pi(1-\cos \theta)}{4 \pi} \times 2 \\
& =\frac{q}{\varepsilon_{0}}\left(1-\frac{\ell}{\sqrt{\ell^{2}+R^{2}}}\right)=\frac{q}{\varepsilon_{0}}\left(1-\frac{2}{\sqrt{5}}\right)
\end{aligned}
$$

15. Answer (B)

Hint : Use KVL and KCL

Solution :

For $R_{A B}$

$$
\therefore \quad R_{A B}=\frac{7 R}{12}
$$

For $R_{A C}$

$\therefore \quad R_{A C}=\frac{3 R}{4}$
$\therefore \quad \frac{R_{A B}}{R_{A C}}=\frac{7 \times 4}{12 \times 3}=\frac{7}{9}$
16. Answer $A(R, T) ; B(S, T) ; C(Q, S) ; D(Q, S)$

Hint : In isothermal process $\Delta U=0$
Solution :
For A : PV = constant
$\Rightarrow \Delta U=0, \Delta W=$ positive
$\Rightarrow \Delta Q=$ positive
For $\mathrm{B}: ~ P=\frac{p R T}{m} \Rightarrow T=$ constant
$\Rightarrow \Delta U=0, \Delta W=-$ negative, $\Delta Q=$ negative
And so on.
17. Answer $A(P, R) ; B(P, S) ; C(Q, T) ; D(Q, S)$

Hint : After earthing, charge on outer surface of outer most plates becomes zero.
Solution :
Before earthing

After earthing

$$
V_{A B}=\frac{Q d}{\varepsilon_{0} A}, V_{B C}=\frac{3 Q d}{\varepsilon_{0} A}, V_{C D}=0, V_{D E}=\frac{3 Q d}{\varepsilon_{0} A}
$$

18. Answer (06)

Hint : Use superposition principle.
Solution :
$E_{1}=\frac{Q}{4 \pi \varepsilon_{0} a^{2}}$

$\therefore \quad E_{\text {net }}=3 \times\left(E_{1} \cos \theta\right)=3 \times \frac{Q}{4 \pi \varepsilon_{0} a^{2}} \times \sqrt{\frac{2}{3}}$

$$
=\frac{Q \sqrt{6}}{4 \pi \varepsilon_{0} a^{2}}
$$

19. Answer (01)

Hint : Use Newton's law.

Solution :

$\frac{-d T}{d t}=b\left(T-T_{s}\right)$
$\Rightarrow \quad \Delta T=(\Delta T)_{0} e^{-b t}$
$\therefore t_{2}=2 t_{0}$
$\therefore \quad n=1$
20. Answer (02)

Hint : Reduce it to a finite circuit.

Solution :

$R_{A B}=R_{C D}, V_{C D}=\frac{1}{2} V_{A B}$
$\therefore \quad$ Current gets equally distributed
$\therefore \quad R_{2}=R_{A B}$
And, $R_{A B}=R_{1}+\left(\frac{R_{2}}{2}\right)=R_{2}$
$\Rightarrow \frac{R_{2}}{R_{1}}=2$

PART - II (CHEMISTRY)

21. Answer (C, D)

Hint :

P is

Solution :
Q is

22. Answer (A, C, D)
 is more basic than aniline

Solution :

are less basic than aniline
23. Answer (D)

Solution :

Racemic mixture
24. Answer (A, C, D)

Hint :

Solution :

Q is slightly basic
P contains fluorine atom
Because of the presence of $-\mathrm{NH}_{2}$ group, Q can give coupling reaction
25. Answer (B, C, D)

Hint : Benzaldehyde is not oxidised by Fehling's reagent.

Solution :

Acetophenone can give iodoform and bromoform.
26. Answer (D)

Hint : Given D-glyceraldehyde is ' R '

Solution :

R as well as D.
27. Answer (B)

Hint : D and L convention is used for amino acids also
Solution :
(D) fructose is laevorotatory (I)
(D) glucose is dextrorotatory (d)
28. Answer (A)

Hint : Product obtained after ozonolysis

Solution :
C^{*} is L
$C^{\#}$ is D.
29. Answer (B)
30. Answer (A)
31. Answer (B)

Hint and Solution : Q. Nos. 29 to 31

(B)

Solution :

32. Answer (A)

Hint : Excess of ether and water as solvent will favour $S_{N} 1$ reaction.

Solution :

33. Answer (C)

Hint :

Solution :

34. Answer (B)

Hint :

(P)
(Q)

Solution :

Possible Products
40. Answer (07)

Hint :

Solution :

$x=1, y=2, z=4$

PART - III (MATHEMATICS)

41. Answer (B, C)

Hint: Perpendicularity of two lines.

Solution :

L_{1} and L_{2} if they are \perp to a common line $\Rightarrow \lambda=-1$ for two adjacent sides of a square
$L_{1} \perp L_{2}$
$\therefore\left(\lambda^{2}+1\right) \lambda^{2}=1$
$\Rightarrow \lambda^{5}+2 \lambda^{3}+\lambda-1=0=f(\lambda)$
$\therefore f^{\prime}(\lambda)=5 \lambda^{4}+6 \lambda^{2}+1=0$
$\therefore f(\lambda)=0$ has only one real root
42. Answer (A, B)

Hint : Condition of two degree equation (to represent pair of straight line.

Solution :

$\Delta=0 \Rightarrow a b c+2 f g h=a f^{2}+b g^{2}+c h^{2}$
$\Rightarrow c=\frac{-10}{9}$
Also
$\cos \alpha=\left|\frac{a+b}{\sqrt{(a-b)^{2}+4 h^{2}}}\right| \Rightarrow \alpha=\cos ^{-1}\left(\frac{5}{\sqrt{34}}\right)$
43. Answer (A)

Hint : Division formula between two points.

Solution :

$$
A\left(\frac{a b}{a+b}\left(\frac{1-m}{-m}, 0\right): B\left(-0, \frac{a b}{a+b}(1-m)\right)\right.
$$

Mid-point of $A B$ is (h, k)
$\therefore 2 h=\frac{a b}{a+b} \frac{(m-1)}{m} ; 2 k \frac{a b}{a+b}(1-m)$
$\therefore \frac{1}{2 h}+\frac{1}{2 k}=\frac{a+b}{a b}$
$\Rightarrow \mathrm{ab}(x+y)=2(a+b) x y$ is the locus
Let P divides $A B$ in ratio 1:3
$\therefore P\left(\frac{\frac{3 a b}{a+b}\left(1-\frac{1}{m}\right)}{4}, \frac{a b}{a+b}(1-m)\right)$
$\therefore(x+3 y) a b \equiv 4(a+b) x y$ is the required locus
44. Answer (B, D)

Hint : Distance between two parallel lines.

Solution :

Distance between two parallel lines $=2 \sqrt{5}$
\therefore points on line $\frac{x-1}{-2}=\frac{y+2}{1}= \pm 2 \sqrt{5}$

$$
\overline{\sqrt{5}} \quad \frac{\dot{\sqrt{5}}}{}
$$

\therefore points are $(-3,0)$ and $(5,-4)$
\therefore Required lines are

$$
2 x-y+6=0 \text { and } 2 x-y-14=0
$$

45. Answer (B, C)

Hint : Translation and Rotation of axes.

Solution :

For $f(x, y)=0$
new origin=
$\left(\frac{h f-b h}{a b-h^{2}}, \frac{g f-a f}{a b-h^{2}}\right) \equiv\left(\frac{28}{-14}, \frac{42}{-14}\right) \equiv(-2,-3)$
For $g(x, y)=0$
$\theta=\frac{1}{2} \tan ^{-1}\left(\frac{2 h}{a-b}\right)=\frac{1}{2} \tan ^{-1}\left(\frac{2 \times \sqrt{3}}{2}\right)$
$=\frac{1}{2} \times \frac{\pi}{3}=\frac{\pi}{6}$
46. Answer (C)

Hint : Family of circle with line.

Solution :

Let required circle
$x^{2}+y^{2}-3 x+2 y-4+\lambda(2 x+5 y+2)=0$
$\therefore C\left(\frac{3-2 \lambda}{2}, \frac{-(5 \lambda+2)}{2}\right)$ satisfy $x+y=11$
$\therefore \lambda=-3$
\therefore Required circle is $x^{2}+y^{2}-9 x-13 y-10=0$
47. Answer (D)

Hint: Orthogonal of two circles.

Solution :

Let required circle
$(x-1)^{2}+(y+1)^{2}+\lambda(2 x+3 y+1)=0$
Circle with diameter points $(0,3)$ and $(-2,-1)$ is
$x^{2}+y^{2}+2 x-2 y-3=0$
(i) of (ii) intersect orthogonally
$\therefore(2 \lambda-1)+-2\left(\frac{3 \lambda}{2}+1\right)=\lambda-1 \Rightarrow \lambda=\frac{-3}{2}$
Required circle is $2 x^{2}+2 y^{2}-10 x-5 y+1=0$
48. Answer (A)

Hint : Touching concept of line with circle.

Solution :

Let required circle
$\left(x^{2}+y^{2}-4\right)+\lambda(x+2 y-4)=0$
$C\left(\frac{-\lambda}{2},-\lambda\right)=\lambda=\sqrt{\frac{5 \lambda^{2}}{4}+4 \lambda+4}$
\because it touches line $x+2 y-5=0$
$\therefore\left|\frac{\frac{-\lambda}{2}+2(-\lambda)-5}{\sqrt{5}}\right|=\sqrt{\frac{5 \lambda^{2}}{4}+4 \lambda+4}$
$\Rightarrow 5(\lambda+2)^{2}=5 \lambda^{2}+16 \lambda+16$
$\Rightarrow \lambda=-1$
\therefore Required circle $x^{2}+y^{2}-x-2 y=0$
49. Answer (D)

Hint : Chord of contact of circle.

Solution :

Equation of C.O.C $h x+k y=8$
Also $t k=h+2 t^{2}$ (ii) $\because(h, k)$ satisfy tangent)
$\Rightarrow h x+y \frac{\left(h+2 t^{2}\right)}{t}-8=0$
$\Rightarrow 2(t y-4)+h\left(x+\frac{y}{t}\right)=0$
$\therefore \quad$ Line passes through point
$y=\frac{4}{t}$ and $x=\frac{-y}{t}$
$\Rightarrow \frac{y}{4}=-\frac{x}{y} \Rightarrow y^{2}=-4 x$
50. Answer (A)

Hint : Point of intersection of two curves.

Solution :

Point of intersection of $x=-2$ and $x^{2}+y^{2}=16$
$\therefore y^{2}=12 \Rightarrow y= \pm 2 \sqrt{3}$
\therefore Point $(-2,2 \sqrt{3})$
51. Answer (C)

Hint : Circumcircle of triangle $A B C$

Solution :

The equation of the circumcircle of $\triangle A Q B$ is
$\left(x^{2}+y^{2}-8\right)+\lambda(h x+k y-8)=0 \because(\mathrm{~A}=-1)$ due to $(0,0)$ satisfy it
\therefore Equation is $x^{2}+y^{2}-h x-k y=0$
Now centre $\left(\frac{h}{2}, \frac{k}{2}\right)$
\therefore For locus let $x=\frac{h}{2} ; y=\frac{k}{2}$
$h=2 x$ and $k=2 y$
$\because t k=h+2 t^{2} \therefore$ at $t=2$
The required locus is $2 y=x+4$
52. Answer (C)

Hint : I.T.F. conversion in domain.

Solution :
Let $\sin ^{-1} x=\theta \Rightarrow x=\sin \theta$
Now
$\cos ^{-1} x=\cos ^{-1}(\sin \theta)=\cos ^{-1}\left(-\cos \left(\frac{3 \pi}{2}-\theta\right)\right)$
$=\pi-\cos ^{-1}\left(\cos \left(\frac{3 \pi}{2}-\theta\right)\right)$
$=\pi-\left(\frac{3 \pi}{2}-\theta\right)$ as $\frac{3 \pi}{2}-\theta \in(0, \pi)$
$=\theta-\frac{\pi}{2}=\sin ^{-1} x-\frac{\pi}{2}$
$\therefore \sin ^{-1} x+\cos ^{-1} x=2 \sin ^{-1} x-\frac{\pi}{2}$
53. Answer (A)

Hint : Locus of midpoint of Parallel chords.

Solution :

Let middle point is (h, k)
$\therefore \quad$ Equation of chord in mid-point form is
$\frac{x}{h}+\frac{y}{k}=2$
$\therefore-\frac{1}{h \times \frac{1}{k}}=m \Rightarrow k=-m h$
$\Rightarrow y+m x=0$ is the required locus
54. Answer (B)

Hint : Condition of common tangent on two curves.

Solution :

$y=\frac{x}{2}+2$ is tangent on $\frac{x^{2}}{4}+\frac{y^{2}}{b^{2}}=1$
$\Rightarrow 4+4 b^{2}=16 \Rightarrow b^{2}+1=4 \Rightarrow b= \pm \sqrt{3}$
Now tangent at other point is given by $-2 y=x+4$
$\Rightarrow x+2 y+4=0$
55. Answer (D)

Hint : Length of latus rectum independency.

Solution :

$\theta=2 \tan ^{-1} 2$
$\because \sqrt{3}<2<\sqrt{2}+1$
$\frac{\pi}{3}<\tan ^{-1} 2<\frac{3 \pi}{8}$
$\Rightarrow \frac{2 \pi}{3}<\theta<\frac{3 \pi}{-4}$
56. Answer A(P, Q); B(P, Q); C(R, T); D(S, T)

Hint : Property of perpendicular normals.

Solution :

Equation of normal at ' p ' is
$y=-t x+2 a t+a t^{3}$
Put $y=-2 a t \Rightarrow x=4 a+a t^{2}$
$\therefore G\left(4 a+a t^{2},-2 a t\right)$
Required locus $y^{2}=4 a(x-4 a)$

$$
\because a=1
$$

$\therefore y^{2}=4(x-4)$
Now verify each option
57. Answer $A(P) ; B(Q) ; C(Q, S) ; D(R, S)$

Hint : Type of functions concept.

Solution :

(A) $f(x)= \begin{cases}\left((1)^{1}\right)^{n} x>0=1 & , x>0 \\ \left((-1)^{-1}\right)^{n} x<0 & , x<0\end{cases}$
$f(x)$ is an odd function. $f(x)$ is not bijective
$\because f(x)$ is not one one
(B) $f(x)=\frac{x}{e^{x}-1}+\frac{x}{2}+1$
$f(x)=\frac{-x}{e^{-x}-1}-\frac{x}{2}+1=x+\frac{x}{e^{x}-1}-\frac{x}{2}+f(x)$
$\therefore f(x)$ is an even function $\because f(x)$ is not bijective
(C) $f(-x)=f(x) \therefore f(x)$ is even. $f(x)$ is periodic but time period not define
(D) $f(x)=\max \{\tan x, \cot x\}$. From graph of $f(x)$ it is clear that
$f(x)$ is neither even nor odd
$\because f(x+\pi)=\max \{\tan (x+\pi), \cot (x+\pi)\}$
$=\max \{\tan x, \cot x\} f(x)$ is periodic with $\mathrm{f}(\mathrm{x})$ is periodic with π
58. Answer (03)

Hint : Graphical solution.

Solution :

From graph it is clear that curves intersect at 3 points
\therefore Only 3 solutions
59. Answer (00)

Hint : Trigonometric conversion of I.T.F.

Solution :

$$
\begin{aligned}
& \sin \left(\cos ^{-1}\left(\tan \left(\tan ^{-1}\left(\sqrt{x^{2}-1}\right)\right)\right)\right) \\
& =\sin \left(\cos ^{-1} \sqrt{x^{2}-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sin \left(\sin ^{-1} \sqrt{2-x^{2}}\right)=\sqrt{2-x^{2}} \\
& \therefore \text { Common domain }[1, \sqrt{2}] \Rightarrow 2-x^{2}=1+x \\
& \Rightarrow x^{2}+x-1=0 \Rightarrow x=\frac{-1 \pm \sqrt{5}}{2} \\
& x=\frac{\sqrt{5}-1}{2} \notin[1, \sqrt{2}]
\end{aligned}
$$

\therefore No solution exists
60. Answer (09)

Hint : Sum of infinite G.P.

Solution :

$$
\begin{aligned}
& \frac{1}{1-\sin \left(\cos ^{-1} x\right)}=2 \\
& \Rightarrow \sin \left(\cos ^{-1} x\right)=\frac{1}{2} \\
& \Rightarrow \cos ^{-1} x=\frac{\pi}{6} \Rightarrow x=\frac{\sqrt{3}}{2} \Rightarrow 4 x^{2}=3 \\
& \Rightarrow 12 x^{2}=9
\end{aligned}
$$

