All India Aakash Test Series for JEE (Advanced)-2020

TEST - 2A (Paper-1) - Code-C

Click here to access Code-D

Test Date : 24/11/2019

ANSWERS					
Р	PHYSICS	CHE	EMISTRY	MA	THEMATICS
1.	(C)	21.	(B)	41.	(B)
2.	(B)	22.	(A)	42.	(C)
3.	(B)	23.	(B)	43.	(B)
4.	(D)	24.	(B)	44.	(D)
5.	(D)	25.	(B)	45.	(A)
6.	(C)	26.	(D)	46.	(B)
7.	(A, B, D)	27.	(B, D)	47.	(B, C, D)
8.	(B)	28.	(A, B, D)	48.	(A, B)
9.	(B, D)	29.	(A, B, C)	49.	(A, B, C)
10.	(B, D)	30.	(C)	50.	(C, D)
11.	(B, C, D)	31.	(A)	51.	(A, D)
12.	(A)	32.	(C)	52.	(A)
13.	(C)	33.	(C)	53.	(D)
14.	(C)	34.	(B)	54.	(B)
15.	(D)	35.	(C)	55.	(C)
16.	$A \to (P,S)$	36.	$A \to (Q,S,T)$	56.	$A \to (Q,R,S)$
	$B \to (Q,R)$		$B \to (P,R,S)$		$B \to (Q)$
	$C \to (P,S)$		$C \to (P,R,S,T)$		$C \rightarrow (R, S)$
	$D \to (P,R)$		$D \to (Q,R,S)$		$D \to (P,T)$
17.	$A \to (P,T)$	37.	$A \to (Q,R,T)$	57.	$A \to (S)$
	$B \to (Q,R)$		$B \to (P)$		$B \to (Q,R,S,T)$
	$C \to (R,S,T)$		$C \to (R,S,T)$		$C \rightarrow (R)$
	$D \rightarrow (Q, R)$		$D \rightarrow (T)$		$D \to (P,Q,R,S,T)$
18.	(16)	38.	(25)	58.	(36)
19.	(50)	39.	(04)	59.	(16)
20.	(29)	40.	(12)	60.	(45)

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

HINTS & SOLUTIONS

PART - I (PHYSICS)

1. Answer (C)

Hint: Second overtone contains 3 loops Solution:

$$\frac{\lambda}{2} = \frac{2}{3} \Longrightarrow \lambda = \frac{4}{3} m$$

Amp. = $2A \sin kx = A_{max} \sin(kx)$

$$\therefore A = (A_{\max}) \sin\left(\frac{2\pi \times 3}{4} \times \frac{1}{6}\right)$$
$$\Rightarrow A = (2) \times \left(\frac{1}{\sqrt{2}}\right) mm$$

= √2 mm

2. Answer (B)

Hint : At maximum temperature $\frac{dT}{dV} = 0$

Solution :

$$\left[P_{0} + (1-\alpha)V^{2}\right]V = nRT$$

$$\Rightarrow T = \frac{P_{0}V + (1-\alpha)V^{3}}{nR}$$

$$\therefore \frac{dT}{dV} = 0 \text{ at } V^{2} = \frac{P_{0}}{3(\alpha-1)}$$

$$\therefore P = P_{0} + (1-\alpha) \times \frac{P_{0}}{3(\alpha-1)}$$

$$\Rightarrow P = \frac{2P_{0}}{3}$$

3. Answer (B)

Hint : $Q = Q_0 e^{-t/\tau}$ during discharging **Solution** :

$$Q_{0} = CV_{0}, C_{2}\left(\frac{C}{K}\right)$$
$$\therefore V_{2} = \frac{CV_{0}}{\left(\frac{C}{K}\right)} = KV_{0}$$
$$\tau = R \times C_{2} = \frac{RC}{K}$$
$$\therefore V = V_{2}e^{-t/\tau}$$
$$\Rightarrow \frac{V_{0}}{2} = KV_{0} \times e^{-\frac{t}{\tau}}$$

$$\Rightarrow \frac{1}{2K} = e^{-t/\tau}$$
$$\Rightarrow \ln(2K) = \frac{t}{\tau}$$
$$\Rightarrow t = \tau \ln(2K)$$
$$t = \frac{RC}{K} \ln(2K)$$

4. Answer (D)

Hint: Use reverse symmetry concept Solution:

Using KVL and KCL, we get

$$R_{eq} = \frac{2R_1R_2 + R_2R_3 + R_3R_1}{(R_1 + R_2 + 2R_3)}$$
$$= \frac{2 \times (2 \times 3) + (3 \times 1) + (1 \times 2)}{(2 + 3 + 1 \times 2)}$$

$$=\frac{12+3+2}{7}=\frac{17}{7}\Omega$$

5. Answer (D)Hint: Heat current remains constantSolution :

$$\frac{\left(T_{1}-T\right)}{\frac{L}{k2\pi a\times\left(\frac{a+b}{2}\right)}} = \frac{T_{1}-T_{2}}{\frac{L}{k\times\pi a\times b}}$$
$$\Rightarrow T = \frac{T_{1}a+T_{2}b}{(a+b)}$$

6. Answer (C)

Hint:
$$E_{\text{axis}} = \frac{qx}{4\pi\varepsilon_0 \left(R^2 + x^2\right)^{3/2}}$$

Solution:

$$E = \frac{q}{4\pi\varepsilon_0 d^2} - \frac{q \times d}{4\pi\varepsilon_0 \left(d^2 + R^2\right)^{3/2}}$$
$$= \frac{3qR^2}{8\pi\varepsilon_0 d^4}$$

Answer (A, B, D)
 Hint: Use KVL and KCL.
 Solution :

$$R_{eq} = 1 + \frac{20}{9} = \frac{29}{9} \Omega$$
$$\therefore I_0 = \frac{58}{(29/9)} = 18 \text{ A}$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

$$\therefore 1_{(2\Omega)} = \frac{18}{2} = 9 \text{ A}$$

$$1_{(3\Omega)} = \frac{6}{6+3} \times 9 = 6 \text{ A}$$

$$I_{(5\Omega)} = \frac{4}{9} \times (18) = 8 \text{ A}$$

$$I_{(4\Omega)} = \frac{5}{9} \times (18) = 10 \text{ A}$$

$$\therefore V_{(4\Omega)} = 4 \times 10 = 40 \text{ V}$$

$$P_{(5\Omega)} = 8^2 \times 5 = 320 \text{ W}$$

8. Answer (B)

Hint : Use Gauss's law

Solution :

 σ on outer surface becomes uniform. Potential at outside points is only due to charge on outer surface of shell.

 \therefore $V_A = V_B$

9. Answer (B, D)

Hint : Apparent wavelength changes when source moves.

Solution :

$$f' = \frac{(340 - 10)}{(340 - 20)} \times (200) = 206 \text{ Hz}$$

$$\lambda' = \lambda_0 = V_s \times T = \frac{340}{200} - 20 \times \frac{1}{200} = 1.6 \text{ m}$$

10. Answer (B, D)

Hint : $V_{rms}^2 = \frac{\int u^2 dN}{N}$

Solution :

$$N = \text{Area} = \frac{1}{2} \times 10 \times 10 = 50$$
$$\frac{dN}{dM} = u + 10$$

$$\therefore V_{\rm rms}^2 = \frac{\int u^2 \times (10 - u) \, du}{N} = \frac{\int_0^{10} (10u^2 - u^3) \, du}{50}$$
$$V_{\rm rms}^2 = \frac{1000 \times (4 - 3)}{12 \times 50} = \frac{2500}{3 \times 50}$$
$$\Rightarrow V_{\rm rms} = \sqrt{\frac{50}{3}} \, \text{m/s}$$

11. Answer (B, C, D)

Hint : Use KVL and KCL. Solution : $Q_{\text{total}} = 180 - 70 = 110 \ \mu\text{C}$ $q_A = \frac{2}{2+6+3} \times (110) = 20 \ \mu\text{C}$ $q_B = \frac{6}{2+3+6} \times (110) = 60 \ \mu\text{C}$ $q_C = \frac{3}{2+6+3} \times (110) = 30 \ \mu\text{C}$ $\Delta q_S = (20+30) - (-70) = 120 \ \mu\text{C}$

12. Answer (A)

Hint: Flux is proportional to charge Solution :

$$\frac{2\pi(1-\cos\alpha)}{4\pi} \times \left(\frac{q_1}{\varepsilon_0}\right)$$
$$= \frac{2\pi(1-\cos\beta)}{4\pi} \times \left(\frac{q_2}{\varepsilon_0}\right)$$
$$\Rightarrow \frac{q_1}{q_2} = \frac{1-\cos\beta}{1-\cos\alpha} = \frac{1-0}{1-\frac{1}{2}} = 2$$

13. Answer (C)

Hint : Flux is proportional to charge **Solution**:

- $q_1 = 3q_2$
- \Rightarrow one third of total flux of q_1 will terminate at q_2

$$\therefore \frac{4\pi}{3} = 2\pi (1 - \cos \alpha_{\max})$$
$$\Rightarrow \cos(\alpha_{\max}) = 1 - \frac{2}{3} = \frac{1}{3}$$
$$\Rightarrow \tan(\alpha_{\max}) = 2\sqrt{2} \quad \Rightarrow \alpha_{\max} = \tan^{-1} (2\sqrt{2})$$

14. Answer (C)

Hint : $A \rightarrow B$ Isochoric $C \rightarrow D$ Isochoric $B \rightarrow C$ Isothermal $D \rightarrow A$ Isothermal

15. Answer (D)

Hint : W isothermal = $nRT_0 \ln \left(\frac{V_2}{V_1}\right)$

Solution of Q.Nos. 14 and 15

$$W_{BC} = 2P_0V_0\ln\left(\frac{V_c}{V_B}\right) = -P_0V_0\ln(2)$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

$$\Rightarrow V_{c} = \frac{V_{0}}{\sqrt{2}}$$
$$\therefore P_{c} = \frac{2P_{0}V_{0}}{V_{c}} = 2\sqrt{2}P_{0}$$
$$\therefore W_{DA} = \left(\sqrt{2}P_{0}\right)\left(\frac{V_{0}}{\sqrt{2}}\right)\ln\left(\sqrt{2}\right) = \frac{P_{0}V_{0}}{2}\ln(2)$$
$$\therefore W_{ABCDA} = 0 + -P_{0}V_{0}\ln(2) + 0 + \frac{1}{2}P_{0}V_{0}\ln(2)$$
$$= -\frac{P_{0}V_{0}}{2}\ln(2)$$

16. Answer A(P, S); B(Q, R); C(P, S); D(P, R)

Hint : Capacitance increases due to slab.

Solution :

Total capacitance increases, so charge on *A* increases as well as voltage increases.

- :. Voltage on *B* decreases. So, charge on it decreases
- :. Charge on C and D increases
- 17. Answer A(P, T); B(Q, R); C(R, S, T); D(Q, R)

Hint : Use Gauss's law.

Solution :

Electric field is uniform in spherical cavity in sphere and in cylindrical cavity in cylinder.

18. Answer (16)

Hint : Use PV = nRT

Solution :

19. Answer (50)

Hint : Voltmeter are not ideal

Solution :

Let resistance of each voltmeter be R₀

$$\therefore Ri' = 20 R_0 (1 - i) \dots (i)$$

and $2Ri' = 30 \dots (ii)$
$$\Rightarrow i' = \frac{3}{4}i, \qquad \therefore i_{(V_2)} = 1 - i' = 1 - \frac{3i}{4}$$

$$\therefore 2Ri' = 30 = R_0 (1 - i) = R_0 \left(1 - \frac{3i}{4}\right)$$

$$\Rightarrow i = 400 \mu A$$

$$\therefore R = \frac{20}{400 \times 10^{-6}} = 50 \times 10^{3} \Omega$$

20. Answer (29)

Hint: BC is isothermal

Solution :

$$\left(\mathbf{3}\boldsymbol{P}_{0}\right)\times\boldsymbol{V}_{C}=\boldsymbol{P}_{0}\times\boldsymbol{V}_{0}$$

$$\Rightarrow V_{\rm C} = \frac{V_0}{3}$$

:: CA is a adiabatic.

$$\therefore (3P_0) \times \left(\frac{V_0}{3}\right)^r = \left(\frac{P_0}{2}\right) (V_0)^r$$
$$\Rightarrow \gamma = \frac{\ln 6}{\ln 3} = \frac{\ln 2 + \ln 3}{\ln 3} = \frac{18}{11}$$

 $\therefore p + q = 18 + 11 = 29$

- **PART II (CHEMISTRY)**
- 21. Answer (B)

Hint :

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 2A (Paper-1) (Code-C)_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2020

22. Answer (A)

Hint : A paired with T (A = T)

Solution :

G paired with C (G = C)

23. Answer (B)

Hint : In DMF S_N 2 mechanism is favoured during nucleophilic substitution reaction.

Solution :

Electron withdrawing group increases the tendency of $S_N 2$.

24. Answer (B)

Hint : Hydrolysis of ester under alkaline condition occurs as

Solution :

Greater the extent of electron withdrawing strength of R, greater will be the rate of reaction

25. Answer (B)

Hint : Compound which are planar, has $(4n + 2) \pi e^{-}$ are aromatic

Solution :

Boron has vacant 2*p* orbital hence planar (*sp*²) and has $6\pi e^{-}$

26. Answer (D)

Hint :

27. Answer (B, D)

Hint :

Solution :

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2020 Test - 2A (Paper-1) (Code-C)_(Hints & Solutions)

28. Answer (A, B, D)

Solution :

Formed alcohol is 2°

- CH - OH - CH₃ + CH₃ - COO⁻ + CHBr₃ + NaBr CH. ĊH.

29. Answer (A, B, C)

Hint :

... Major elimination occurs from this site

(R)

This is cope elimination, which occurs through syn elimination mechanism from the less hindered site]

30. Answer (C)

Hint : Hoffmann bromamide reaction.

Solution :

31. Answer (A)

Solution :

32. Answer (C)

Hint : $SO_2 + O_3 \longrightarrow SO_3 + O_2$

 O_3 is consumed by SO_2 only

Solution :

 $NO + O \longrightarrow NO_2$

So more of O3 is consumed

33. Answer (C)

Hint : CCl₂F₂ is Freon-12

Solution :

Freons initiate radical chain reactions.

34. Answer (B)

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

35. Answer (C)

Hint and Solution for Q. No. 34 and 35

Solution :

36. Answer A(Q, S, T); B(P, R, S); C(P, R, S, T); D(Q, R, S)

Hint :

Reducing sugars	Non-reducing Sugars
Maltose	
Lactose	Cellulose
Glucose	Sucrose
Fructose	

Solution :

Sucrose $\longrightarrow \alpha$ -glucose + β -fructose

Maltose \longrightarrow 2 α -glucose

Lactose $\longrightarrow \beta$ -galactose + β -glucose

Cellulose $\longrightarrow \beta$ -glucose

37. Answer A(Q, R, T); B(P); C(R, S, T); D(T) Hint :

Solution :

In aldol condensation H_2O elimination through E1cB mechanism.

38. Answer (25)

Hint : Since, the sample has $[\alpha]$ to be +4.25 it means (+) alanine is present in excess.

Solution :

Optical purity = $\frac{4.25}{8.5} \times 100 = 50\%$. This means that 50% of the sample is pure (+) alanine and the other 50% is racemic. In which equal amount (i.e. 25% each) of (+) and (-) alanine is present.

39. Answer (04)

Hint : Since, six 1° H's contribute to the 42% yield of 1-chloro propane, we can say that one 1° H leads to 7% (42/6) of this product. Similarly each 2° hydrogen contributes 28% (56/2) yield to the 2-chloro propane product.

Solution :

So the relative rate of the reaction of each 2°H compared to 1° H is $\frac{28}{7} = 4$

40. Answer (12)

Hint :

$$2 \text{ Ph} - \text{CHO} \xrightarrow{-\text{CN}} \text{Ph} - \text{C} - \text{CH} - \text{Ph} (A)$$

Solution :

Total 3 isomers of (B) are formed

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

PART - III (MATHEMATICS)

41. Answer (B)

Hints : Circumcentre is mid point of hypotenuse. Solution :

Clearly a > 2, b > 2

$$\Rightarrow \quad \frac{1}{a} < \frac{1}{2}, \ \frac{1}{b} < 2$$
$$\Rightarrow \quad \frac{1}{a} + \frac{1}{b} < 1$$

Also, $rS = \Delta$

$$\Rightarrow 1\left(\frac{a+b+\sqrt{a^2+b^2}}{2}\right) = \frac{1}{2}ab$$
$$\Rightarrow \frac{1}{a} + \frac{1}{b} + \sqrt{\frac{a^2+b^2}{a^2b^2}} = 1$$

42. Answer (C)

Hint : First find point of intersection of lines. Solution :

The vertices of the triangle are

O(0, 0),
$$A\left(\frac{1}{\ell+m}, \frac{1}{\ell+m}\right), B\left(\frac{1}{\ell-m}, \frac{-1}{\ell-m}\right)$$

Let circumcenter is (h, k)

$$\therefore \quad h = \frac{\ell}{\ell^2 - m^2}, \ k = \frac{-m}{\ell^2 - m^2}$$

$$\Rightarrow \quad h^2 + k^2 = \frac{1}{\left(\ell^2 - m^2\right)^2} \text{ and } h^2 - k^2 = \frac{1}{\ell^2 - m^2}$$

$$\Rightarrow \quad \text{Required locus } x^2 + y^2 = \left(x^2 - y^2\right)^2$$

Hint : Use condition for tangency.

Solution :

Area of trapezium = $\frac{1}{2}(a+3a)(2r) = 4$ \Rightarrow ar = 1 Equation of BC is $y = -r^2 \left(x - \frac{3}{r}\right)$ \Rightarrow $y + r^2 x - 3r = 0$ As BC is a tangent $\Rightarrow \frac{\left|r+r^{3}-3r\right|}{\sqrt{1+r^{4}}}=r$ \Rightarrow $r = \frac{\sqrt{3}}{2}$ 44. Answer (D) Hint : Find chord of contact equation. Solution : Equation of tangent at (1, 2) to C_1 is x + 2y - 5 = 0...(1) Let point T is (h, k)Equation of C.O.C. w.r.t. C2 is *.*.. xh + yk - 9 = 0...(2) $\Rightarrow \frac{h}{1} = \frac{k}{2} = \frac{9}{5}$ $\Rightarrow h = \frac{9}{5}, k = \frac{18}{5}$ 45. Answer (A) Hint : Think of quadratic equation to solve. Solution : Let equation of circle is

$$(x-r)^2 + y^2 = r^2 \qquad \dots(1)$$

$$\Rightarrow (at^2 - r)^2 + 4a^2t^2 \ge r^2$$

$$\Rightarrow \quad a^2t^4 + r^2 - 2rat^2 + 4a^2t^2 \ge r^2$$

 $\Rightarrow a^2t^4 - 2art^2 + 4a^2t^2 \ge 0$

 $\Rightarrow at^2 - 2r + 4a \ge 0$

$$\Rightarrow r \leq \frac{a}{2}(t^2+4) \leq 2a$$

 \therefore Maximum value of r = 2a

46. Answer (B)

Hint : Tangency condition.

Solution :

Let the line is y = mx + 5

 \therefore *m* > 0 and is least \therefore the line

should touch the ellipse

- \Rightarrow 25 = 16 m² + 9
- \Rightarrow 16 m^2 = 16

$$\Rightarrow m = \pm 1 \qquad \Rightarrow m = 1$$

47. Answer (B, C, D)

Hint : $A.M \ge G.M$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Solution :

$$\therefore uv < 0 \Rightarrow u + \frac{1}{u} \ge 2, \quad v + \frac{1}{v} \le -2$$

or
$$u + \frac{1}{u} \le -2 \quad \text{or} \quad v + \frac{1}{v} \ge 2$$

$$\Rightarrow \quad \sec^{-1} \left(u + \frac{1}{u} \right) \in \left[\frac{\pi}{3}, \frac{\pi}{2} \right]$$

$$\sec^{-1} \left(v + \frac{1}{v} \right) \in \left(\frac{\pi}{2}, \frac{2\pi}{3} \right]$$

$$\therefore \quad t \in \left(\frac{5\pi}{6}, \frac{7\pi}{6} \right)$$

48. Answer (A, B)

Hint : Conversion into trigonometric function values.

Solution :

$$\therefore \tan \alpha = \frac{36}{77}, \qquad \tan \beta = \frac{3}{4}, \qquad \tan \gamma = \frac{8}{15}$$
$$\tan (\alpha + \beta + \gamma) = \frac{\Sigma(\tan \alpha) - \pi(\tan \alpha)}{1 - \Sigma \tan \alpha \tan \beta} = \infty$$

 $\Rightarrow \quad \alpha + \beta + \gamma = \frac{\pi}{2}$

- .: Option (A) and (B) are correct.
- 49. Answer (A, B, C)

Hint : Concept of orthogonality of two curves. Solution :

Due to orthogonal intersection of ellipse and hyperbola

- $a^2 + b^2 = 16$
- $\Rightarrow a^2e^2 = 16$

$$\Rightarrow a^2 = 4 \qquad \Rightarrow b^2 = 12$$

... No director circle of hyperbola is possible.

50. Answer (C, D)

Hint : Property of normal.

Solution :

- : Normal intersects the parabola $y^2 = 4ax$ again
- $\therefore x_1 x_2 = 4a^2$ and $y_1 y_2 = 8a^2$

$$\therefore a = 2 \implies x_1 x_2 = 16 \text{ and } y_1 y_2 = 32$$

51. Answer (A, D) Hint : Form family of circles.

Solution :

Circle with points $\left(2t_1, \frac{2}{t_1}\right)$ and $\left(2t_2, \frac{2}{t_2}\right)$ as diameter is

$$(x-2t_1)(x-2t_2)+\left(y-\frac{2}{t_1}\right)\left(y-\frac{2}{t_2}\right)=0$$

Also
$$t_1t_2 = -1$$

Hence the equation of circle is $(x^2 + y^2 - 8) - 2(t_1 + t_2)(x - y) = 0$ The point of intersection of $x^2 + y^2 = 8$ and x - y = 0 are (2, 2) and (-2, -2)

- 52. Answer (A)
- 53. Answer (D)

Hint for Q. No. 52 and 53

Hint : Family of circles.

Solution for Q. No. 52 and 53

Let Σ is $x^2 + y^2 - 9x - 12y + 53 + \lambda(2x + 3y - 27) = 0$

Given circle $x^2 + y^2 - 4x - 6y - 3 = 0$

- ... Equation of common chord
- $-5x + 6y + 56 + \lambda(2x + 3y 27) = 0$
- $\therefore \quad \text{Chord passes through the point of intersection} \\ \text{of } 5x + 6y 56 = 0 \text{ and } 2x + 3y 27 = 0 \\ \text{Chord passes through the point of intersection} \\ \text{Chord pass$

i.e.
$$\left(2, \frac{23}{3}\right)$$

 \therefore Σ intersects $x^2 + y^2 = 29$ orthogonally.

$$53 - 27\lambda - 29 = 0$$

24 8

$$\lambda = \frac{24}{27} = \frac{6}{9}$$

∴ Circle is

$$x^{2} + y^{2} + \left(\frac{16}{9} - 9\right)x + \left(\frac{29}{9} - 12\right)y + 29 = 0$$

∴ Center is $\left(\frac{65}{18}, \frac{14}{3}\right)$

- 54. Answer (B)
- 55. Answer (C)

 \Rightarrow

Hint for Q. No. 54 and 55
Mathematical induction approach.
Solution for Q. No. 54 and 55
Put
$$n = 2$$

$$\Rightarrow \quad f(1) + 2f(2) = 0f(2)$$
$$\Rightarrow \quad 4f(2) = f(1)$$

$$f(2) = \frac{1}{8}$$

Similarly $f(3) = \frac{1}{12}$, $f(4) = \frac{1}{16}$... and so on

:.
$$f(n) = \frac{1}{4n}$$
 : $f(1010) = \frac{1}{4040}$

56. Answer A(Q, R, S); B(Q); C(R, S); D(P, T) Hint : Equality hold conditions for I.T.F. Solution :

(A)
$$(\sin^{-1}x)^2 = (\sin^{-1}y)^2 = \frac{\pi^2}{4}$$

⇒ $x = \pm 1$ and $y = \pm 1$
∴ $x^3 + y^3 = -2, 0, 2$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2020 Test - 2A (Paper-1) (Code-C)_(Hints & Solutions)

(B)
$$(\cos^{-1}x)^2 = (\cos^{-1}y)^2 = \pi^2$$

 $\Rightarrow x = y = -1$
 $\therefore x^5 + y^5 = -2$
(C) $(\sin^{-1}x)^2 = \frac{\pi^2}{4}$ and $(\cos^{-1}y)^2 = \pi^2$
 $\Rightarrow \sin^{-1}x = \pm \frac{\pi}{2}$ and $\cos^{-1}y = \pi$
 $\Rightarrow x = \pm 1$ and $y = -1$
(D) $|\sin^{-1}x - \sin^{-1}y| = \pi$
 \Rightarrow either $\sin^{-1}x = -\frac{\pi}{2}$ and $\sin^{-1}y = \frac{\pi}{2}$
or $\sin^{-1}x = \frac{\pi}{2}$ and $\sin^{-1}y = -\frac{\pi}{2}$
 $x = -1$ and $y = 1$ or $x = 1$ and $y = -1$
 $\therefore x^y = (-1)^1$ or $(1)^{-1}$
 $= -1$ or 1

57. Answer A(S); B(Q, R, S, T); C(R); D(P, Q, R, S, T)
Hint : Eccentricity formula for conic.
Solution :

(A)
$$\because \sqrt{c^2 + d^2} = a$$
; $\sqrt{a^2 - b^2} = c$
 $\Rightarrow c^2 + d^2 = a^2$ and $a^2 - b^2 = c^2$
 $\Rightarrow d = b \Rightarrow \frac{d}{b} = 1$
(B) Now $e_1 = 1 - \frac{b^2}{a^2} = e_2 = 1 + \frac{d^2}{c^2}$
 $\Rightarrow e_1^2 + e_2^2 = 2 + b^2 \left(\frac{a^2 - c^2}{a^2 c^2}\right)$
 $e_1 + e_2 = e_1^2 + \frac{1}{e_1^2} > 2$
(C) $2 \tan^{-1} \left(\frac{d}{c}\right) = \frac{2\pi}{3} \Rightarrow d = \sqrt{3}c \Rightarrow d^2 = 3c^2$
 $\Rightarrow a^2 = 4c^2 \Rightarrow a = 2c$
 $\therefore 4e_1 = 4\sqrt{1 - \frac{b^2}{a^2}}$
 $= 4\sqrt{1 - \frac{3c^2}{4c^2}} = 2$
(D) $b^2 = a^2(1 - e_1^2)$
 $\Rightarrow a^2 = 2b^2 \Rightarrow c^2 = b^2$
For P.O.I. $\frac{h^2}{b^2} - \frac{k^2}{b^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2}$

$$\Rightarrow \frac{h^2}{k^2} = \frac{2a^2}{a^2e_1^2} = 4$$
58. Answer (36)
Hint : Point of intersection of two normals.
Solution :
Let $P(t_1)$ and $Q(t_2)$ are points
 $\therefore t_2 = 2t_1$
 \because P.O.I of normals
 $R(2a + a(t_1^2 + t_1t_2 + t_2^2), -t_1t_2(t_1 + t_2))$
 $R(2 + t_1^2 + t_1t_2 + t_2^2, -t_1t_2(t_1 + t_2))$
 $\therefore x = 2 + 7t_1^2, \quad y = -6t_1^3$
 $\left(\frac{x-2}{7}\right)^3 = t_1^6 = \left(\frac{-y}{6}\right)^2 = \frac{y^2}{36}$
 \therefore Locus is $y^2 = \frac{36}{343}(x-2)^3$
 $\therefore k = 36$

 $\Rightarrow h^2 \left(\frac{a^2 - b^2}{a^2 b^2} \right) = \frac{2k^2}{b^2}$

59. Answer (16) Hint : Monotonicity of function. Solution :

Also f(x) is an increasing function in domain

∴
$$p = f(-1)$$
 and $q = f(1)$
⇒ $p = -\frac{\pi}{2} - \frac{\pi}{2} + (-2) = -\pi - 2$

and
$$q = \frac{\pi}{2} + \frac{\pi}{2} + 6 = \pi + 6$$

 $\therefore \quad p+q=4 \qquad \Rightarrow (p+q)^2 = 16$

60. Answer (45)

Hint : Linear inequalities of two variables.

Solution :

Total number of integral co-ordinates in shaded region are 45

All India Aakash Test Series for JEE (Advanced)-2020

TEST - 2A (Paper-1) - Code-D

Test Date : 24/11/2019

ANSWERS					
PH	YSICS	CHEM	IISTRY	MATHE	MATICS
1.	(C)	21.	(D)	41.	(B)
2.	(D)	22.	(B)	42.	(A)
3.	(D)	23.	(B)	43.	(D)
4.	(B)	24.	(B)	44.	(B)
5.	(B)	25.	(A)	45.	(C)
6.	(C)	26.	(B)	46.	(B)
7.	(B, C, D)	27.	(A)	47.	(A, D)
8.	(B, D)	28.	(C)	48.	(C, D)
9.	(B, D)	29.	(A, B, C)	49.	(A, B, C)
10.	(B)	30.	(A, B, D)	50.	(A, B)
11.	(A, B, D)	31.	(B, D)	51.	(B, C, D)
12.	(A)	32.	(C)	52.	(A)
13.	(C)	33.	(C)	53.	(D)
14.	(C)	34.	(B)	54.	(B)
15.	(D)	35.	(C)	55.	(C)
16.	$A \to (P,T)$	36.	$A \to (Q,R,T)$	56.	$A \rightarrow (S)$
	$B \to (Q,R)$		$B \to (P)$		$B \to (Q,R,S,T)$
	$C \to (R,S,T)$		$C \to (R,S,T)$		$C \rightarrow (R)$
	$D \rightarrow (Q, R)$		$D \rightarrow (T)$		$D \to (P,Q,R,S,T)$
17.	$A \to (P,S)$	37.	$A \to (Q,S,T)$	57.	$A \to (Q,R,S)$
	$B \to (Q,R)$		$B \to (P,R,S)$		$B \to (Q)$
	$C \to (P,S)$		$C \to (P,R,S,T)$		$C \rightarrow (R, S)$
	$D \rightarrow (P, R)$		$D \to (Q,R,S)$		$D \rightarrow (P, T)$
18.	(29)	38.	(12)	58.	(45)
19.	(50)	39.	(04)	59.	(16)
20.	(16)	40.	(25)	60.	(36)

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

HINTS & SOLUTIONS

PART - I (PHYSICS)

1. Answer (C)

Hint: $E_{\text{axis}} = \frac{qx}{4\pi\varepsilon_0 \left(R^2 + x^2\right)^{3/2}}$

Solution:

$$E = \frac{q}{4\pi\varepsilon_0 d^2} - \frac{q \times d}{4\pi\varepsilon_0 \left(d^2 + R^2\right)^{3/2}} = \frac{3qR^2}{8\pi\varepsilon_0 d^4}$$

Answer (D)
 Hint: Heat current remains constant
 Solution :

$$\frac{\left(T_{1}-T\right)}{\frac{L}{k2\pi a\times\left(\frac{a+b}{2}\right)}} = \frac{T_{1}-T_{2}}{\frac{L}{k\times\pi a\times b}}$$
$$\Rightarrow T = \frac{T_{1}a+T_{2}b}{(a+b)}$$

3. Answer (D)

Hint: Use reverse symmetry concept Solution:

Using KVL and KCL, we get

$$R_{eq} = \frac{2R_1R_2 + R_2R_3 + R_3R_1}{(R_1 + R_2 + 2R_3)}$$
$$= \frac{2 \times (2 \times 3) + (3 \times 1) + (1 \times 2)}{(2 + 3 + 1 \times 2)}$$
$$= \frac{12 + 3 + 2}{7} = \frac{17}{7} \Omega$$

4. Answer (B)

Hint : $Q = Q_0 e^{-t/\tau}$ during discharging **Solution** :

$$Q_{.0} = CV_0, C_2\left(\frac{C}{K}\right)$$
$$\therefore V_2 = \frac{CV_0}{\left(\frac{C}{K}\right)} = KV_0$$
$$\tau = R \times C_2 = \frac{RC}{K}$$
$$\therefore V = V_2 e^{-t/\tau}$$
$$\Rightarrow \frac{V_0}{2} = KV_0 \times e^{-\frac{t}{\tau}}$$
$$\Rightarrow \frac{1}{2K} = e^{-t/\tau}$$

$$\Rightarrow \ln(2K) = \frac{t}{\tau}$$
$$\Rightarrow t = \tau \ln(2K)$$
$$t = \frac{RC}{K} \ln(2K)$$

5. Answer (B)

Hint : At maximum temperature $\frac{dT}{dV} = 0$

Solution :

$$\begin{bmatrix} P_0 + (1-\alpha)V^2 \end{bmatrix} V = nRT$$

$$\Rightarrow T = \frac{P_0V + (1-\alpha)V^3}{nR}$$

$$\therefore \frac{dT}{dV} = 0 \text{ at } V^2 = \frac{P_0}{3(\alpha - 1)}$$

$$\therefore P = P_0 + (1-\alpha) \times \frac{P_0}{3(\alpha - 1)}$$

$$\Rightarrow P = \frac{2P_0}{3}$$

Answer (C)
 Hint: Second overtone contains 3 loops
 Solution:

$$\rightarrow$$

$$\frac{\lambda}{2} = \frac{2}{3} \Longrightarrow \lambda = \frac{4}{3} m$$

Amp. =
$$2A \sin kx = A_{max} \sin(kx)$$

$$\therefore A = (A_{\max}) \sin\left(\frac{2\pi \times 3}{4} \times \frac{1}{6}\right)$$

$$\Rightarrow A = (2) \times \left(\frac{1}{\sqrt{2}}\right) mm = \sqrt{2} mm$$

7. Answer (B, C, D) Hint : Use KVL and KCL. Solution : $Q_{\text{total}} = 180 - 70 = 110 \,\mu\text{C}$ $q_A = \frac{2}{2+6+3} \times (110) = 20 \,\mu\text{C}$ $q_B = \frac{6}{2+3+6} \times (110) = 60 \,\mu\text{C}$ $q_C = \frac{3}{2+6+3} \times (110) = 30 \,\mu\text{C}$ $\Delta q_S = (20+30) - (-70) = 120 \,\mu\text{C}$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

8. Answer (B, D)

Hint :
$$V_{rms}^2 = \frac{\int u^2 dN}{N}$$

Solution :

$$N = \text{Area} = \frac{1}{2} \times 10 \times 10 = 50$$
$$\frac{dN}{du} = u + 10$$
$$\therefore V_{\text{rms}}^2 = \frac{\int u^2 \times (10 - u) \, du}{N} = \frac{\int_0^{10} (10u^2 - u^3) \, du}{50}$$
$$V_{\text{rms}}^2 = \frac{1000 \times (4 - 3)}{12 \times 50} = \frac{2500}{3 \times 50}$$
$$\Rightarrow V_{\text{rms}} = \sqrt{\frac{50}{3}} \, \text{m/s}$$

9. Answer (B, D)

Hint : Apparent wavelength changes when source moves.

Solution :

$$f' = \frac{(340 - 10)}{(340 - 20)} \times (200) = 206 \text{ Hz}$$
$$\lambda' = \lambda_0 = V_s \times T = \frac{340}{200} - 20 \times \frac{1}{200} = 1.6 \text{ m}$$

10. Answer (B)

Hint : Use Gauss's law

Solution :

 σ on outer surface becomes uniform. Potential at outside points is only due to charge on outer surface of shell.

 $\therefore V_A = V_B$

11. Answer (A, B, D)

Hint: Use KVL and KCL.

Solution :

$$R_{eq} = 1 + \frac{20}{9} = \frac{29}{9} \Omega$$

$$\therefore I_0 = \frac{58}{(29/9)} = 18 \text{ A}$$

$$\therefore 1_{(2\Omega)} = \frac{18}{2} = 9 \text{ A}$$

$$1_{(3\Omega)} = \frac{6}{6+3} \times 9 = 6 \text{ A}$$

$$I_{(5\Omega)} = \frac{4}{9} \times (18) = 8 \text{ A}$$

$$I_{(4\Omega)} = \frac{5}{9} \times (18) = 10 \text{ A}$$

$$\therefore V_{(4\Omega)} = 4 \times 10 = 40 \text{ V}$$

$$P_{(5\Omega)} = 8^2 \times 5 = 320 \text{ W}$$

12. Answer (A)

Hint: Flux is proportional to charge

Solution :

$$\frac{2\pi(1-\cos\alpha)}{4\pi} \times \left(\frac{q_1}{\varepsilon_0}\right) = \frac{2\pi(1-\cos\beta)}{4\pi} \times \left(\frac{q_2}{\varepsilon_0}\right)$$
$$\Rightarrow \frac{q_1}{q_2} = \frac{1-\cos\beta}{1-\cos\alpha} = \frac{1-0}{1-\frac{1}{2}} = 2$$

13. Answer (C)

Hint : Flux is proportional to charge **Solution**:

 $q_1 = 3q_2$

 \Rightarrow one third of total flux of q_1 will terminate at q_2

$$\therefore \frac{4\pi}{3} = 2\pi \left(1 - \cos \alpha_{\max}\right)$$
$$\Rightarrow \cos(\alpha_{\max}) = 1 - \frac{2}{3} = \frac{1}{3}$$
$$\Rightarrow \tan(\alpha_{\max}) = 2\sqrt{2} \quad \Rightarrow \alpha_{\max} = \tan^{-1}\left(2\sqrt{2}\right)$$

14. Answer (C)

Hint : $A \rightarrow B$ Isochoric	$C \rightarrow D$ Isochoric
$B \rightarrow C$ Isothermal	$D \rightarrow A$ Isothermal

15. Answer (D)

Hint : *W* isothermal =
$$nRT_0 \ln \left(\frac{V_2}{V_1}\right)$$

Solution of Q.Nos. 14 and 15

$$W_{BC} = 2P_0 V_0 \ln\left(\frac{V_c}{V_B}\right) = -P_0 V_0 \ln(2)$$
$$\Rightarrow V_c = \frac{V_0}{\sqrt{2}}$$

$$\therefore P_C = \frac{2P_0V_0}{V_C} = 2\sqrt{2}P_0$$

$$\therefore W_{DA} = \left(\sqrt{2}P_0\right) \left(\frac{V_0}{\sqrt{2}}\right) \ln\left(\sqrt{2}\right) = \frac{P_0V_0}{2}\ln(2)$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

$$\therefore W_{ABCDA} = 0 + -P_0 V_0 \ln(2) + 0 + \frac{1}{2} P_0 V_0 \ln(2)$$
$$= -\frac{P_0 V_0}{2} \ln(2)$$

16. Answer A(P, T); B (Q, R); C(R, S, T); D(Q, R)

Hint : Use Gauss's law.

Solution :

Electric field is uniform in spherical cavity in sphere and in cylindrical cavity in cylinder.

17. Answer A(P, S); B(Q, R); C(P, S); D(P, R)

Hint : Capacitance increases due to slab.

Solution :

Total capacitance increases, so charge on *A* increases as well as voltage increases.

- ... Voltage on *B* decreases. So, charge on it decreases
- \therefore Charge on C and D increases
- 18. Answer (29)

Hint: BC is isothermal

Solution :

$$(\mathbf{3}P_0) \times V_C = P_0 \times V_0$$

$$\Rightarrow V_{\rm C} = \frac{V_0}{3}$$

:: CA is a adiabatic.

$$\therefore (3P_0) \times \left(\frac{V_0}{3}\right)^r = \left(\frac{P_0}{2}\right) (V_0)^r$$
$$\Rightarrow \gamma = \frac{\ln 6}{\ln 3} = \frac{\ln 2 + \ln 3}{\ln 3} = \frac{18}{11}$$
$$\therefore p + q = 18 + 11 = 29$$

19. Answer (50)

Hint : Voltmeter are not ideal

Solution :

Let resistance of each voltmeter be R₀

$\therefore Ri' = 20 R_0 (I)$	<i>i – i</i>)(i)
and 2 <i>Ri</i> ' = 30	(ii)
$\Rightarrow i'=\frac{3}{4}i,$	$\therefore i_{(V_2)} = I - i' = I - \frac{3i}{4}$

$$\therefore 2Ri' = 30 = R_0 \left(I - i \right) = R_0 \left(I - \frac{3i}{4} \right)$$
$$\Rightarrow i = 400 \,\mu\text{A}$$
$$\therefore R = \frac{20}{400 \times 10^{-6}} = 50 \times 10^3 \,\Omega = 50 \,\text{k}\Omega$$

20. Answer (16) **Hint :** Use *PV* = *nRT*

Solution :

$$T = T_0 + \frac{T_0}{L} x$$

$$T_0 \qquad T \qquad T_0 \qquad T \qquad T_0$$

$$\therefore \int dn = \int_{x=0}^{L} \frac{P \times Adx}{R\left(T_0 + \frac{T_0}{L}x\right)}$$

$$\Rightarrow n = \frac{PAL}{RT_0} \ln(2)$$

$$\Rightarrow n = \frac{PAL}{4RT_0} \ln(16)$$

$$\therefore 16$$

PART - II (CHEMISTRY)

21. Answer (D)

Hint :

Solution :

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 2A (Paper-1) (Code-D)_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2020

22. Answer (B)

Hint : Compound which are planar, has $(4n + 2) \pi e^{-}$ are aromatic

Solution :

Boron has vacant 2p orbital hence planar (sp^2) and has $6\pi e^-$

23. Answer (B)

Hint : Hydrolysis of ester under alkaline condition occurs as

Solution :

Greater the extent of electron withdrawing strength of R, greater will be the rate of reaction

24. Answer (B)

Hint : In DMF S_N 2 mechanism is favoured during nucleophilic substitution reaction.

Solution :

Electron withdrawing group increases the tendency of $S_N 2$.

25. Answer (A)

Hint : A paired with T (A = T)

Solution :

G paired with C (G = C)

26. Answer (B)

Hint :

27. Answer (A) Hint :

Solution :

28. Answer (C)

Hint : Hoffmann bromamide reaction.

Solution :

29. Answer (A, B, C)

Hint :

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

30. Answer (A, B, D)

Hint :

Solution :

Formed alcohol is 2°

CH₈ — CH — OH CH₈ → CH₁ — COO⁻ + CHBr₈ + NaBr CH₁ CH₁

31. Answer (B, D)

Hint :

32. Answer (C) Hint : $SO_2 + O_3 \longrightarrow SO_3 + O_2$ O_3 is consumed by SO_2 only Solution :

$$NO + O \longrightarrow NO_2$$

So more of O_3 is consumed

33. Answer (C) Hint : CCl₂F₂ is Freon-12

Solution :

Freons initiate radical chain reactions.

- 34. Answer (B)
- 35. Answer (C)

Hint and Solution for Q. No. 34 and 35

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 2A (Paper-1) (Code-D)_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2020

Solution :

36. Answer A(Q, R, T); B(P); C(R, S, T); D(T)

Hint :

Solution :

In aldol condensation H₂O elimination through E1cB mechanism.

37. Answer A(Q, S, T); B(P, R, S); C(P, R, S, T); D(Q, R, S)

Hint :

Reducing sugars	Non-reducing Sugars			
Maltose				
Lactose	Cellulose			
Glucose	Sucrose			
Fructose				
Solution :				
Sucrose $\longrightarrow \alpha$ -glucose + β -fructose				

Maltose \longrightarrow 2 α -glucose

Lactose $\longrightarrow \beta$ -galactose + β -glucose

Cellulose $\longrightarrow \beta$ -glucose

Hint :

2 Ph — CHO
$$\xrightarrow{-CN}$$
 Ph — C — CH — Ph (A)

 $\cap u$

Solution :

Total 3 isomers of (B) are formed

Degree of unsaturation of (C) is 9

39. Answer (04)

Hint : Since, six 1° H's contribute to the 42% yield of 1-chloro propane, we can say that one 1° H leads to 7% (42/6) of this product. Similarly each 2° hydrogen contributes 28% (56/2) yield to the 2-chloro propane product.

Solution :

So the relative rate of the reaction of each 2°H compared to 1° H is $\frac{28}{7} = 4$

40. Answer (25)

Hint : Since, the sample has $[\alpha]$ to be +4.25 it means (+) alanine is present in excess.

Solution :

Optical purity = $\frac{4.25}{8.5} \times 100 = 50\%$. This means

that 50% of the sample is pure (+) alanine and the other 50% is racemic. In which equal amount (i.e. 25% each) of (+) and (–) alanine is present.

PART - III (MATHEMATICS)

41. Answer (B)

Hint : Tangency condition.

Solution :

Let the line is y = mx + 5 $\therefore m > 0$ and is least \therefore the line

should touch the ellipse

 \Rightarrow 25 = 16 m² + 9

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

 $\Rightarrow 16 m^2 = 16$ $\Rightarrow m = \pm 1 \qquad \Rightarrow m = 1$

42. Answer (A)

Hint : Think of quadratic equation to solve.

...(1)

Solution :

Let equation of circle is

$$(x - r)^2 + y^2 = r^2$$

 $\Rightarrow (at^2 - r)^2 + 4a^2t^2 \ge r^2$

- $\Rightarrow a^2t^4 + t^2 2tat^2 + 4a^2t^2 \ge t^2$
- $\Rightarrow a^2t^4 2art^2 + 4a^2t^2 \ge 0$
- $\Rightarrow at^2 2r + 4a \ge 0$

$$\Rightarrow \quad r \leq \frac{a}{2} (t^2 + 4) \leq 2a$$

- \therefore Maximum value of r = 2a
- 43. Answer (D)

Hint : Find chord of contact equation.

Solution :

Equation of tangent at (1, 2) to C_1 is

$$x + 2y - 5 = 0$$
 ...(1)

Let point T is (h, k)

 \therefore Equation of C.O.C. w.r.t. C_2 is

$$xh + yk - 9 = 0 \qquad \dots (2)$$

$$\Rightarrow \quad \frac{h}{1} = \frac{k}{2} = \frac{9}{5}$$
$$\Rightarrow \quad h = \frac{9}{5}, \ k = \frac{18}{5}$$

44. Answer (B)

Hint : Use condition for tangency.

Solution :

Area of trapezium = $\frac{1}{2}(a+3a)(2r) = 4$

$$\Rightarrow$$
 ar = 1

Equation of *BC* is
$$y = -r^2 \left(x - \frac{3}{r} \right)$$

 $\Rightarrow y + r^2 x - 3r = 0$ As *BC* is a tangent

$$\Rightarrow \quad \frac{\left|r+r^{3}-3r\right|}{\sqrt{1+r^{4}}} = r$$
$$\Rightarrow \quad r = \frac{\sqrt{3}}{2}$$

45. Answer (C)

Hint : First find point of intersection of lines.

Solution :

The vertices of the triangle are

$$O(0, 0), A\left(\frac{1}{\ell+m}, \frac{1}{\ell+m}\right), B\left(\frac{1}{\ell-m}, \frac{-1}{\ell-m}\right)$$

Let circumcenter is (h, k)

$$\therefore \quad h = \frac{\ell}{\ell^2 - m^2}, \ k = \frac{-m}{\ell^2 - m^2}$$
$$\Rightarrow \quad h^2 + k^2 = \frac{1}{\left(\ell^2 - m^2\right)^2} \text{ and } h^2 - k^2 = \frac{1}{\ell^2 - m^2}$$

$$\Rightarrow$$
 Required locus $x^2 + y^2 = (x^2 - y^2)^2$

46. Answer (B)

Hints : Circumcentre is mid point of hypotenuse.

Solution :

Clearly
$$a > 2$$
, $b > 2$

$$\Rightarrow \quad \frac{1}{a} < \frac{1}{2}, \quad \frac{1}{b} < 2$$

$$\Rightarrow \frac{1}{a} + \frac{1}{b} < 1$$

Also,
$$rS = \Delta$$

$$\Rightarrow \quad 1\left(\frac{a+b+\sqrt{a^2+b^2}}{2}\right) = \frac{1}{2}ab$$

$$\Rightarrow \quad \frac{1}{a} + \frac{1}{b} + \sqrt{\frac{a^2+b^2}{a^2b^2}} = 1$$

47. Answer (A, D) Hint : Form family of circles. Solution :

Circle with points $\left(2t_1, \frac{2}{t_1}\right)$ and $\left(2t_2, \frac{2}{t_2}\right)$ as diameter is

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 2A (Paper-1) (Code-D)_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2020

$$\left(x-2t_{1}\right)\left(x-2t_{2}\right)+\left(y-\frac{2}{t_{1}}\right)\left(y-\frac{2}{t_{2}}\right)=0$$

Also $t_1 t_2 = -1$

Hence the equation of circle is $(x^2 + y^2 - 8) - 2(t_1 + t_2)(x - y) = 0$

The point of intersection of $x^2 + y^2 = 8$ and x - y = 0 are (2, 2) and (-2, -2)

48. Answer (C, D)

Hint : Property of normal.

Solution :

- : Normal intersects the parabola $y^2 = 4ax$ again
- $\therefore x_1 x_2 = 4a^2$ and $y_1 y_2 = 8a^2$
- $\therefore a = 2 \qquad \Rightarrow x_1 x_2 = 16 \text{ and } y_1 y_2 = 32$
- 49. Answer (A, B, C)

Hint : Concept of orthogonality of two curves.

Solution :

Due to orthogonal intersection of ellipse and hyperbola

- $a^2 + b^2 = 16$
- $\Rightarrow a^2e^2 = 16$
- $\Rightarrow a^2 = 4 \qquad \Rightarrow b^2 = 12$
- \therefore No director circle of hyperbola is possible.
- 50. Answer (A, B)

Hint : Conversion into trigonometric function values.

Solution :

$$\therefore \tan \alpha = \frac{36}{77}, \qquad \tan \beta = \frac{3}{4}, \qquad \tan \gamma = \frac{8}{15}$$
$$\tan(\alpha + \beta + \gamma) = \frac{\Sigma(\tan \alpha) - \pi(\tan \alpha)}{15} = \infty$$

$$(\alpha + \beta + \gamma) = \frac{1 - \Sigma \tan \alpha \tan \beta}{1 - \Sigma \tan \alpha \tan \beta}$$

 $\Rightarrow \alpha + \beta + \gamma = \frac{\pi}{2}$

- ... Option (A) and (B) are correct.
- 51. Answer (B, C, D)

Hint : $A.M \ge G.M$ Solution :

$$\therefore uv < 0 \Rightarrow u + \frac{1}{u} \ge 2, \quad v + \frac{1}{v} \le -2$$

or
$$u + \frac{1}{u} \le -2 \quad \text{or} \quad v + \frac{1}{v} \ge 2$$

$$\Rightarrow \quad \sec^{-1}\left(u + \frac{1}{u}\right) \in \left[\frac{\pi}{3}, \frac{\pi}{2}\right]$$

$$\sec^{-1}\left(v + \frac{1}{v}\right) \in \left(\frac{\pi}{2}, \frac{2\pi}{3}\right]$$

- $\therefore \quad t \in \left(\frac{5\pi}{6}, \frac{7\pi}{6}\right)$
- 52. Answer (A)
- 53. Answer (D)
 - Hint for Q. No. 52 and 53

Family of circles.

Solution for Q. No. 52 and 53

Let Σ is $x^2 + y^2 - 9x - 12y + 53 + \lambda(2x + 3y - 27) = 0$

Given circle $x^2 + y^2 - 4x - 6y - 3 = 0$

- ... Equation of common chord
- $-5x + 6y + 56 + \lambda(2x + 3y 27) = 0$
- :. Chord passes through the point of intersection of 5x + 6y - 56 = 0 and 2x + 3y - 27 = 0

i.e.
$$\left(2, \frac{23}{3}\right)$$

 \therefore Σ intersects $x^2 + y^2 = 29$ orthogonally.

$$53 - 27\lambda - 29 = 0$$

$$\lambda = \frac{24}{27} = \frac{8}{9}$$

∴ Circle is

$$x^{2} + y^{2} + \left(\frac{16}{9} - 9\right)x + \left(\frac{29}{9} - 12\right)y + 29 = 0$$

∴ Center is $\left(\frac{65}{18}, \frac{14}{3}\right)$

- 54. Answer (B)
- 55. Answer (C)

Hind for Q. No. 54 and 55

Mathematical induction approach.

Solution for Q. No. 54 and 55

Put *n* = 2

$$\Rightarrow f(1) + 2f(2) = 6f(2)$$

$$\Rightarrow 4f(2) = f(1)$$

$$\Rightarrow f(2) = \frac{1}{8}$$

Similarly $f(3) = \frac{1}{12}$, $f(4) = \frac{1}{16}$... and so on

:.
$$f(n) = \frac{1}{4n}$$
 : $f(1010) = \frac{1}{4040}$

56. Answer A(S); B(Q, R, S, T); C(R); D(P, Q, R, S, T) **Hint :** Eccentricity formula for conic.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

 $3c^2$

(A)
$$\because \sqrt{c^2 + d^2} = a; \sqrt{a^2 - b^2} = c$$

 $\Rightarrow c^2 + d^2 = a^2 \text{ and } a^2 - b^2 = c^2$
 $\Rightarrow d = b \qquad \Rightarrow \frac{d}{b} = 1$
(B) Now $e_1 = 1 - \frac{b^2}{a^2} \quad e_2 = 1 + \frac{d^2}{c^2}$
 $\Rightarrow e_1^2 + e_2^2 = 2 + b^2 \left(\frac{a^2 - c^2}{a^2 c^2}\right)$
 $e_1 + e_2 = e_1^2 + \frac{1}{e_1^2} > 2$
(C) $2\tan^{-1}\left(\frac{d}{c}\right) = \frac{2\pi}{3} \Rightarrow d = \sqrt{3}c \Rightarrow d^2 =$
 $\Rightarrow a^2 = 4c^2 \Rightarrow a = 2c$
 $\therefore 4e_1 = 4\sqrt{1 - \frac{b^2}{a^2}} = 4\sqrt{1 - \frac{3c^2}{4c^2}} = 2$
(D) $b^2 = a^2(1 - e_1^2)$
 $\Rightarrow a^2 = 2b^2 \Rightarrow c^2 = b^2$
For P.O.I. $\frac{h^2}{b^2} - \frac{k^2}{b^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2}$
 $\Rightarrow h^2 \left(\frac{a^2 - b^2}{a^2 b^2}\right) = \frac{2k^2}{b^2}$

57. Answer A(Q, R, S); B(Q); C(R, S); D(P, T) Hint : Equality hold conditions for I.T.F.

Solution :

(A) $(\sin^{-1}x)^2 = (\sin^{-1}y)^2 = \frac{\pi^2}{4}$ $\Rightarrow x = \pm 1 \text{ and } y = \pm 1$ $\therefore x^3 + y^3 = -2, 0, 2$ (B) $(\cos^{-1}x)^2 = (\cos^{-1}y)^2 = \pi^2$ $\Rightarrow x = y = -1$ $\therefore x^5 + y^5 = -2$ (C) $(\sin^{-1}x)^2 = \frac{\pi^2}{4} \text{ and } (\cos^{-1}y)^2 = \pi^2$ $\Rightarrow \sin^{-1}x = \pm \frac{\pi}{2} \text{ and } \cos^{-1}y = \pi$ $\Rightarrow x = \pm 1 \text{ and } y = -1$ (D) $|\sin^{-1}x - \sin^{-1}y| = \pi$ $\Rightarrow \text{ either } \sin^{-1}x = -\frac{\pi}{2} \text{ and } \sin^{-1}y = \frac{\pi}{2}$

or
$$\sin^{-1}x = \frac{\pi}{2}$$
 and $\sin^{-1}y = -\frac{\pi}{2}$
 $x = -1$ and $y = 1$ or $x = 1$ and $y = -1$
 $\therefore x^{y} = (-1)^{1}$ or $(1)^{-1}$
 $= -1$ or 1

58. Answer (45)

Hint : Linear inequalities of two variables.

Solution :

Total number of integral co-ordinates in shaded region are 45

59. Answer (16) Hint : Monotonicity of function. Solution :

$$\therefore x \in [-1, 1]$$

Also f(x) is an increasing function in domain $\therefore p = f(-1)$ and q = f(1)

$$\Rightarrow p = -\frac{\pi}{2} - \frac{\pi}{2} + (-2) = -\pi - 2$$

and $q = \frac{\pi}{2} + \frac{\pi}{2} + 6 = \pi + 6$
 $\therefore p + q = 4 \Rightarrow (p + q)^2 = 16$

60. Answer (36)

Hint : Point of intersection of two normals.

Solution :

Let $P(t_1)$ and $Q(t_2)$ are points

 $\therefore t_{2} = 2t_{1}$ $\therefore P.O.I \text{ of normals}$ $R\left(2a + a\left(t_{1}^{2} + t_{1}t_{2} + t_{2}^{2}\right), -t_{1}t_{2}\left(t_{1} + t_{2}\right)\right)$ $R\left(2 + t_{1}^{2} + t_{1}t_{2} + t_{2}^{2}, -t_{1}t_{2}\left(t_{1} + t_{2}\right)\right)$ $\therefore x = 2 + 7t_{1}^{2}, \quad y = -6t_{1}^{3}$ $\left(\frac{x - 2}{7}\right)^{3} = t_{1}^{6} = \left(\frac{-y}{6}\right)^{2} = \frac{y^{2}}{36}$ $\therefore \text{ Locus is } y^{2} = \frac{36}{343}(x - 2)^{3}$ $\therefore k = 36$

 Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456