All India Aakash Test Series for JEE (Advanced)-2020

TEST - 2A (Paper-1) - Code-C

Test Date : 24/11/2019

ANSWERS

PHYSICS	
1.	(C)
2.	(B)
3.	(B)
4.	(D)
5.	(D)
6.	(C)
7.	(A, B, D)
8.	(B)
9.	(B, D)
10.	(B, D)
11.	(B, C, D)
12.	(A)
13.	(C)
14.	(C)
15.	(D)
16.	$\mathrm{A} \rightarrow(\mathrm{P}, \mathrm{S})$
	$B \rightarrow(Q, R)$
	$\mathrm{C} \rightarrow(\mathrm{P}, \mathrm{S})$
	$\mathrm{D} \rightarrow(\mathrm{P}, \mathrm{R})$
17.	$\mathrm{A} \rightarrow(\mathrm{P}, \mathrm{T})$
	$B \rightarrow(Q, R)$
	$C \rightarrow(R, S, T)$
	$\mathrm{D} \rightarrow(\mathrm{Q}, \mathrm{R})$
18.	(16)
19.	(50)
20.	(29)

CHEMISTRY

21. (B)
22. (A)
23. (B)
24. (B)
25. (B)
26. (D)
27. (B, D)
28. (A, B, D)
29. (A, B, C)
30. (C)
31. (A)
32. (C)
33. (C)
34. (B)
35. (C)
36. $A \rightarrow(Q, S, T)$
$B \rightarrow(P, R, S)$
$C \rightarrow(P, R, S, T)$
$\mathrm{D} \rightarrow(\mathrm{Q}, \mathrm{R}, \mathrm{S})$
37. $\mathrm{A} \rightarrow(\mathrm{Q}, \mathrm{R}, \mathrm{T})$
$B \rightarrow(P)$
$C \rightarrow(R, S, T)$
$\mathrm{D} \rightarrow(\mathrm{T})$
38. (25)
39. (04)
40. (12)

MATHEMATICS

41. (B)
42. (C)
43. (B)
44. (D)
45. (A)
46. (B)
47. (B, C, D)
48. (A, B)
49. $(\mathrm{A}, \mathrm{B}, \mathrm{C})$
50. (C, D)
51. (A, D)
52. (A)
53. (D)
54. (B)
55. (C)
56. $A \rightarrow(Q, R, S)$
$B \rightarrow(Q)$
$\mathrm{C} \rightarrow(\mathrm{R}, \mathrm{S})$
$D \rightarrow(P, T)$
57. $\mathrm{A} \rightarrow(\mathrm{S})$
$B \rightarrow(Q, R, S, T)$
$C \rightarrow(R)$
$\mathrm{D} \rightarrow(\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T})$
58. (36)
59. (16)
60. (45)

HINTS \& SOLUTIONS

PART - I (PHYSICS)

1. Answer (C)

Hint: Second overtone contains 3 loops

Solution:

$\frac{\lambda}{2}=\frac{2}{3} \Rightarrow \lambda=\frac{4}{3} \mathrm{~m}$
Amp. $=2 A \sin k x=A_{\max } \sin (k x)$
$\therefore A=\left(A_{\max }\right) \sin \left(\frac{2 \pi \times 3}{4} \times \frac{1}{6}\right)$
$\Rightarrow A=(2) \times\left(\frac{1}{\sqrt{2}}\right) \mathrm{mm}$
$=\sqrt{2} \mathrm{~mm}$
2. Answer (B)

Hint : At maximum temperature $\frac{d T}{d V}=0$

Solution :

$\left[P_{0}+(1-\alpha) V^{2}\right] V=n R T$
$\Rightarrow T=\frac{P_{0} V+(1-\alpha) V^{3}}{n R}$
$\therefore \frac{d T}{d V}=0$ at $V^{2}=\frac{P_{0}}{3(\alpha-1)}$
$\therefore P=P_{0}+(1-\alpha) \times \frac{P_{0}}{3(\alpha-1)}$
$\Rightarrow P=\frac{2 P_{0}}{3}$
3. Answer (B)

Hint : $Q=Q_{0} e^{-t / \tau}$ during discharging

Solution :

$$
\begin{aligned}
& Q_{0}=C V_{0}, C_{2}\left(\frac{C}{K}\right) \\
& \therefore V_{2}=\frac{C V_{0}}{\left(\frac{C}{K}\right)}=K V_{0} \\
& \tau=R \times C_{2}=\frac{R C}{K} \\
& \therefore V=V_{2} e^{-t / \tau} \\
& \Rightarrow \frac{V_{0}}{2}=K V_{0} \times e^{-\frac{t}{\tau}}
\end{aligned}
$$

$\Rightarrow \frac{1}{2 K}=e^{-t / \tau}$
$\Rightarrow \ln (2 K)=\frac{t}{\tau}$
$\Rightarrow t=\tau \ln (2 K)$
$t=\frac{R C}{K} \ln (2 K)$
4. Answer (D)

Hint: Use reverse symmetry concept

Solution:

Using KVL and KCL, we get
$\mathrm{R}_{\text {eq }}=\frac{2 R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{\left(R_{1}+R_{2}+2 R_{3}\right)}$
$=\frac{2 \times(2 \times 3)+(3 \times 1)+(1 \times 2)}{(2+3+1 \times 2)}$
$=\frac{12+3+2}{7}=\frac{17}{7} \Omega$
5. Answer (D)

Hint: Heat current remains constant

Solution :

$\frac{\left(T_{1}-T\right)}{\frac{L}{k 2 \pi a \times\left(\frac{a+b}{2}\right)}}=\frac{T_{1}-T_{2}}{\frac{L}{k \times \pi a \times b}}$
$\Rightarrow T=\frac{T_{1} a+T_{2} b}{(a+b)}$
6. Answer (C)

Hint: $E_{\mathrm{axis}}=\frac{q x}{4 \pi \varepsilon_{0}\left(R^{2}+x^{2}\right)^{3 / 2}}$

Solution:

$$
\begin{aligned}
& E=\frac{q}{4 \pi \varepsilon_{0} d^{2}}-\frac{q \times d}{4 \pi \varepsilon_{0}\left(d^{2}+R^{2}\right)^{3 / 2}} \\
& =\frac{3 q R^{2}}{8 \pi \varepsilon_{0} d^{4}}
\end{aligned}
$$

7. Answer (A, B, D)

Hint: Use KVL and KCL.

Solution :

$$
\begin{aligned}
& R_{\mathrm{eq}}=1+\frac{20}{9}=\frac{29}{9} \Omega \\
& \therefore I_{0}=\frac{58}{(29 / 9)}=18 \mathrm{~A}
\end{aligned}
$$

$\therefore 1_{(2 \Omega)}=\frac{18}{2}=9 \mathrm{~A}$
$1_{(3 \Omega)}=\frac{6}{6+3} \times 9=6 \mathrm{~A}$
$I_{(5 \Omega)}=\frac{4}{9} \times(18)=8 \mathrm{~A}$
$I_{(4 \Omega)}=\frac{5}{9} \times(18)=10 \mathrm{~A}$
$\therefore V_{(4 \Omega)}=4 \times 10=40 \mathrm{~V}$
$P_{(5 \Omega)}=8^{2} \times 5=320 \mathrm{~W}$
8. Answer (B)

Hint : Use Gauss's law

Solution :

σ on outer surface becomes uniform. Potential at outside points is only due to charge on outer surface of shell.
$\therefore V_{A}=V_{B}$
9. Answer (B, D)

Hint : Apparent wavelength changes when source moves.

Solution :

$f^{\prime}=\frac{(340-10)}{(340-20)} \times(200)=206 \mathrm{~Hz}$
$\lambda^{\prime}=\lambda_{0}=V_{s} \times T=\frac{340}{200}-20 \times \frac{1}{200}=1.6 \mathrm{~m}$
10. Answer (B, D)

Hint: $V_{r m s}^{2}=\frac{\int u^{2} d N}{N}$

Solution :

$N=$ Area $=\frac{1}{2} \times 10 \times 10=50$
$\frac{d N}{d u}=u+10$
$\therefore V_{\mathrm{rms}}^{2}=\frac{\int u^{2} \times(10-u) d u}{N}=\frac{\int_{0}^{10}\left(10 u^{2}-u^{3}\right) d u}{50}$
$V_{r m s}^{2}=\frac{1000 \times(4-3)}{12 \times 50}=\frac{2500}{3 \times 50}$
$\Rightarrow V_{r m s}=\sqrt{\frac{50}{3}} \mathrm{~m} / \mathrm{s}$
11. Answer (B, C, D)

Hint : Use KVL and KCL.

Solution :

$Q_{\text {total }}=180-70=110 \mu \mathrm{C}$
$q_{A}=\frac{2}{2+6+3} \times(110)=20 \mu \mathrm{C}$
$q_{B}=\frac{6}{2+3+6} \times(110)=60 \mu \mathrm{C}$
$q_{c}=\frac{3}{2+6+3} \times(110)=30 \mu \mathrm{C}$
$\Delta q_{s}=(20+30)-(-70)=120 \mu \mathrm{C}$
12. Answer (A)

Hint: Flux is proportional to charge

Solution :

$$
\begin{aligned}
& \frac{2 \pi(1-\cos \alpha)}{4 \pi} \times\left(\frac{q_{1}}{\varepsilon_{0}}\right) \\
& =\frac{2 \pi(1-\cos \beta)}{4 \pi} \times\left(\frac{q_{2}}{\varepsilon_{0}}\right) \\
& \Rightarrow \frac{q_{1}}{q_{2}}=\frac{1-\cos \beta}{1-\cos \alpha}=\frac{1-0}{1-\frac{1}{2}}=2
\end{aligned}
$$

13. Answer (C)

Hint : Flux is proportional to charge
Solution:
$q_{1}=3 q_{2}$
\Rightarrow one third of total flux of q_{1} will terminate at q_{2}
$\therefore \frac{4 \pi}{3}=2 \pi\left(1-\cos \alpha_{\max }\right)$
$\Rightarrow \cos \left(\alpha_{\max }\right)=1-\frac{2}{3}=\frac{1}{3}$
$\Rightarrow \tan \left(\alpha_{\max }\right)=2 \sqrt{2} \Rightarrow \alpha_{\max }=\tan ^{-1}(2 \sqrt{2})$
14. Answer (C)

Hint : $A \rightarrow B$ Isochoric $\quad C \rightarrow D$ Isochoric
$B \rightarrow C$ Isothermal $\quad D \rightarrow A$ Isothermal
15. Answer (D)

Hint : W isothermal $=n R T_{0} \ln \left(\frac{V_{2}}{V_{1}}\right)$
Solution of Q.Nos. 14 and 15
$W_{B C}=2 P_{0} V_{0} \ln \left(\frac{V_{C}}{V_{B}}\right)=-P_{0} V_{0} \ln (2)$

$$
\begin{aligned}
& \Rightarrow V_{C}=\frac{V_{0}}{\sqrt{2}} \\
& \therefore P_{C}=\frac{2 P_{0} V_{0}}{V_{C}}=2 \sqrt{2} P_{0} \\
& \therefore W_{D A}=\left(\sqrt{2} P_{0}\right)\left(\frac{V_{0}}{\sqrt{2}}\right) \ln (\sqrt{2})=\frac{P_{0} V_{0}}{2} \ln (2) \\
& \therefore W_{A B C D A}=0+-P_{0} V_{0} \ln (2)+0+\frac{1}{2} P_{0} V_{0} \ln (2) \\
& \quad=-\frac{P_{0} V_{0}}{2} \ln (2)
\end{aligned}
$$

16. Answer $A(P, S) ; B(Q, R) ; C(P, S) ; D(P, R)$

Hint : Capacitance increases due to slab.

Solution :

Total capacitance increases, so charge on A increases as well as voltage increases.
\therefore Voltage on B decreases. So, charge on it decreases
$\therefore \quad$ Charge on C and D increases
17. Answer $A(P, T) ; B(Q, R) ; C(R, S, T) ; D(Q, R)$

Hint: Use Gauss's law.

Solution :

Electric field is uniform in spherical cavity in sphere and in cylindrical cavity in cylinder.
18. Answer (16)

Hint: Use $P V=n R T$
Solution :
$T=T_{0}+\frac{T_{0}}{L} x$

$\therefore \int d n=\int_{x=0}^{L} \frac{P \times A d x}{R\left(T_{0}+\frac{T_{0}}{L} x\right)}$
$\Rightarrow n=\frac{P A L}{R T_{0}} \ln (2)$
$\Rightarrow n=\frac{P A L}{4 R T_{0}} \ln (16)$
$\therefore 16$
19. Answer (50)

Hint : Voltmeter are not ideal

Solution :

Let resistance of each voltmeter be R_{0}
$\therefore R i^{\prime}=20 R_{0}(I-i)$ \qquad
and $2 R i^{\prime}=30$
$\Rightarrow i^{\prime}=\frac{3}{4} i, \quad \therefore i_{\left(v_{2}\right)}=I-i^{\prime}=I-\frac{3 i}{4}$
$\therefore 2 R i^{\prime}=30=R_{0}(I-i)=R_{0}\left(I-\frac{3 i}{4}\right)$
$\Rightarrow i=400 \mu \mathrm{~A}$
$\therefore R=\frac{20}{400 \times 10^{-6}}=50 \times 10^{3} \Omega$
$=50 \mathrm{k} \Omega$
20. Answer (29)

Hint: $B C$ is isothermal

Solution :

$\left(3 P_{0}\right) \times V_{C}=P_{0} \times V_{0}$
$\Rightarrow V_{C}=\frac{V_{0}}{3}$
$\because C A$ is a adiabatic.
$\therefore\left(3 P_{0}\right) \times\left(\frac{V_{0}}{3}\right)^{r}=\left(\frac{P_{0}}{2}\right)\left(V_{0}\right)^{r}$
$\Rightarrow \gamma=\frac{\ln 6}{\ln 3}=\frac{\ln 2+\ln 3}{\ln 3}=\frac{18}{11}$
$\therefore \quad p+q=18+11=29$

PART - II (CHEMISTRY)

21. Answer (B)

Hint :

Paracetamol

Solution :

Heroin

Chloramphenicol

22. Answer (A)

Hint : A paired with $T(A=T)$
Solution :
G paired with $C(G \equiv C)$
23. Answer (B)

Hint: In DMF $S_{N} 2$ mechanism is favoured during nucleophilic substitution reaction.

Solution :

Electron withdrawing group increases the tendency of $\mathrm{S}_{\mathrm{N}} 2$.
24. Answer (B)

Hint : Hydrolysis of ester under alkaline condition occurs as

Solution :

Greater the extent of electron withdrawing strength of R , greater will be the rate of reaction
25. Answer (B)

Hint : Compound which are planar, has $(4 n+2) \pi e^{-}$are aromatic

Solution :

Boron has vacant $2 p$ orbital hence planar $\left(s p^{2}\right)$ and has $6 \pi \mathrm{e}^{-}$
26. Answer (D)

Hint :

Solution :

27. Answer (B, D)

Hint :

Solution :

28. Answer (A, B, D)

Hint :

Solution :

Formed alcohol is 2°

29. Answer (A, B, C)

Hint :

Solution :

(Q)

(R)
30. Answer (C)

Hint : Hoffmann bromamide reaction.

Solution :

T
31. Answer (A)

Hint :

Solution :

32. Answer (C)

Hint : $\mathrm{SO}_{2}+\mathrm{O}_{3} \longrightarrow \mathrm{SO}_{3}+\mathrm{O}_{2}$
O_{3} is consumed by SO_{2} only

Solution :

So more of O_{3} is consumed
33. Answer (C)

Hint : $\mathrm{CCl}_{2} \mathrm{~F}_{2}$ is Freon-12

Solution :

Freons initiate radical chain reactions.
34. Answer (B)
35. Answer (C)

Hint and Solution for Q. No. 34 and 35

(P)

Solution :

36. Answer $A(Q, S, T) ; B(P, R, S) ; C(P, R, S, T)$; $D(Q, R, S)$
Hint :
Reducing sugars
Non-reducing Sugars
Maltose
Lactose Cellulose
Glucose
Sucrose
Fructose

Solution :

Sucrose $\longrightarrow \alpha$-glucose $+\beta$-fructose
Maltose $\longrightarrow 2 \alpha$-glucose
Lactose $\longrightarrow \beta$-galactose $+\beta$-glucose
Cellulose $\longrightarrow \beta$-glucose
37. Answer $A(Q, R, T) ; B(P) ; C(R, S, T) ; D(T)$

Hint :

Solution :

In aldol condensation $\mathrm{H}_{2} \mathrm{O}$ elimination through E1cB mechanism.

38. Answer (25)

Hint : Since, the sample has $[\alpha]$ to be +4.25 it means (+) alanine is present in excess.

Solution :

Optical purity $=\frac{4.25}{8.5} \times 100=50 \%$. This means that 50% of the sample is pure $(+)$ alanine and the other 50% is racemic. In which equal amount (i.e. 25% each) of $(+)$ and (-) alanine is present.
39. Answer (04)

Hint : Since, six $1^{\circ} \mathrm{H}^{\prime}$ s contribute to the 42% yield of 1-chloro propane, we can say that one $1^{\circ} \mathrm{H}$ leads to $7 \%(42 / 6)$ of this product. Similarly each 2° hydrogen contributes $28 \%(56 / 2)$ yield to the 2-chloro propane product.

Solution :

So the relative rate of the reaction of each $2^{\circ} \mathrm{H}$ compared to $1^{\circ} \mathrm{H}$ is $\frac{28}{7}=4$
40. Answer (12)

Hint :

Solution :

Total 3 isomers of (B) are formed

Degree of unsaturation of (C) is 9

PART - III (MATHEMATICS)

41. Answer (B)

Hints: Circumcentre is mid point of hypotenuse.
Solution :

Clearly $a>2, b>2$
$\Rightarrow \quad \frac{1}{a}<\frac{1}{2}, \frac{1}{b}<2$
$\Rightarrow \quad \frac{1}{a}+\frac{1}{b}<1$
Also, $r S=\Delta$
$\Rightarrow \quad 1\left(\frac{a+b+\sqrt{a^{2}+b^{2}}}{2}\right)=\frac{1}{2} a b$
$\Rightarrow \quad \frac{1}{a}+\frac{1}{b}+\sqrt{\frac{a^{2}+b^{2}}{a^{2} b^{2}}}=1$
42. Answer (C)

Hint : First find point of intersection of lines.
Solution :
The vertices of the triangle are

$$
O(0,0), A\left(\frac{1}{\ell+m}, \frac{1}{\ell+m}\right), B\left(\frac{1}{\ell-m}, \frac{-1}{\ell-m}\right)
$$

Let circumcenter is (h, k)

$$
\begin{aligned}
& \therefore \quad h=\frac{\ell}{\ell^{2}-m^{2}}, k=\frac{-m}{\ell^{2}-m^{2}} \\
& \Rightarrow h^{2}+k^{2}=\frac{1}{\left(\ell^{2}-m^{2}\right)^{2}} \text { and } h^{2}-k^{2}=\frac{1}{\ell^{2}-m^{2}} \\
& \Rightarrow \text { Required locus } x^{2}+y^{2}=\left(x^{2}-y^{2}\right)^{2}
\end{aligned}
$$

43. Answer (B)

Hint : Use condition for tangency.
Solution :

Area of trapezium $=\frac{1}{2}(a+3 a)(2 r)=4$
$\Rightarrow \quad a r=1$
Equation of $B C$ is $y=-r^{2}\left(x-\frac{3}{r}\right)$
$\Rightarrow \quad y+r^{2} x-3 r=0$
As $B C$ is a tangent
$\Rightarrow \quad \frac{\left|r+r^{3}-3 r\right|}{\sqrt{1+r^{4}}}=r$
$\Rightarrow \quad r=\frac{\sqrt{3}}{2}$
44. Answer (D)

Hint : Find chord of contact equation.

Solution :

Equation of tangent at $(1,2)$ to C_{1} is
$x+2 y-5=0$
Let point T is (h, k)
$\therefore \quad$ Equation of C.O.C. w.r.t. C_{2} is

$$
\begin{equation*}
x h+y k-9=0 \tag{2}
\end{equation*}
$$

$\Rightarrow \quad \frac{h}{1}=\frac{k}{2}=\frac{9}{5}$
$\Rightarrow \quad h=\frac{9}{5}, k=\frac{18}{5}$
45. Answer (A)

Hint : Think of quadratic equation to solve.

Solution :

Let equation of circle is

$$
\begin{equation*}
(x-r)^{2}+y^{2}=r^{2} \tag{1}
\end{equation*}
$$

$\Rightarrow \quad\left(a t^{2}-r\right)^{2}+4 a^{2} t^{2} \geq r^{2}$
$\Rightarrow \quad a^{2} t^{4}+r^{2}-2 r a t^{2}+4 a^{2} t^{2} \geq r^{2}$
$\Rightarrow \quad a^{2} t^{4}-2 a r t^{2}+4 a^{2} t^{2} \geq 0$
$\Rightarrow a t^{2}-2 r+4 a \geq 0$
$\Rightarrow \quad r \leq \frac{a}{2}\left(t^{2}+4\right) \leq 2 a$
$\therefore \quad$ Maximum value of $r=2 a$
46. Answer (B)

Hint : Tangency condition.

Solution :

Let the line is $y=m x+5$
$\because m>0$ and is least \therefore the line
should touch the ellipse
$\Rightarrow \quad 25=16 m^{2}+9$
$\Rightarrow \quad 16 m^{2}=16$
$\Rightarrow \quad m= \pm 1 \quad \Rightarrow m=1$
47. Answer (B, C, D)

Hint : A.M \geq G.M

Solution :

$$
\begin{aligned}
& \therefore u v<0 \Rightarrow u+\frac{1}{u} \geq 2, \quad v+\frac{1}{v} \leq-2 \\
& \text { or } \quad u+\frac{1}{u} \leq-2 \quad \text { or } \quad v+\frac{1}{v} \geq 2 \\
& \Rightarrow \quad \sec ^{-1}\left(u+\frac{1}{u}\right) \in\left[\frac{\pi}{3}, \frac{\pi}{2}\right) \\
& \sec ^{-1}\left(v+\frac{1}{v}\right) \in\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right] \\
& \therefore \quad t \in\left(\frac{5 \pi}{6}, \frac{7 \pi}{6}\right)
\end{aligned}
$$

48. Answer (A, B)

Hint : Conversion into trigonometric function values.

Solution :

$$
\begin{aligned}
& \because \tan \alpha=\frac{36}{77}, \quad \tan \beta=\frac{3}{4}, \quad \tan \gamma=\frac{8}{15} \\
& \tan (\alpha+\beta+\gamma)=\frac{\sum(\tan \alpha)-\pi(\tan \alpha)}{1-\Sigma \tan \alpha \tan \beta}=\infty \\
& \Rightarrow \quad \alpha+\beta+\gamma=\frac{\pi}{2}
\end{aligned}
$$

$\therefore \quad$ Option (A) and (B) are correct.
49. Answer (A, B, C)

Hint : Concept of orthogonality of two curves.
Solution :
Due to orthogonal intersection of ellipse and hyperbola
$a^{2}+b^{2}=16$
$\Rightarrow \quad a^{2} e^{2}=16$
$\Rightarrow \quad a^{2}=4 \quad \Rightarrow \quad b^{2}=12$
$\therefore \quad$ No director circle of hyperbola is possible.
50. Answer (C, D)

Hint : Property of normal.
Solution :
\because Normal intersects the parabola $y^{2}=4 a x$ again
$\therefore x_{1} x_{2}=4 a^{2}$ and $y_{1} y_{2}=8 a^{2}$
$\because a=2 \quad \Rightarrow x_{1} x_{2}=16$ and $y_{1} y_{2}=32$
51. Answer (A, D)

Hint : Form family of circles.
Solution :
Circle with points $\left(2 t_{1}, \frac{2}{t_{1}}\right)$ and $\left(2 t_{2}, \frac{2}{t_{2}}\right)$ as diameter is
$\left(x-2 t_{1}\right)\left(x-2 t_{2}\right)+\left(y-\frac{2}{t_{1}}\right)\left(y-\frac{2}{t_{2}}\right)=0$
Also $t_{1} t_{2}=-1$

Hence the equation of circle is $\left(x^{2}+y^{2}-8\right)-2\left(t_{1}\right.$ $\left.+t_{2}\right)(x-y)=0$
The point of intersection of $x^{2}+y^{2}=8$ and $x-y=0$ are $(2,2)$ and $(-2,-2)$
52. Answer (A)
53. Answer (D)

Hint for Q. No. 52 and 53
Hint : Family of circles.
Solution for Q. No. 52 and 53
Let Σ is $x^{2}+y^{2}-9 x-12 y+53+$ $\lambda(2 x+3 y-27)=0$
Given circle $x^{2}+y^{2}-4 x-6 y-3=0$
$\therefore \quad$ Equation of common chord
$-5 x+6 y+56+\lambda(2 x+3 y-27)=0$
$\therefore \quad$ Chord passes through the point of intersection of $5 x+6 y-56=0$ and $2 x+3 y-27=0$
i.e. $\left(2, \frac{23}{3}\right)$
$\because \quad \Sigma$ intersects $x^{2}+y^{2}=29$ orthogonally.
$53-27 \lambda-29=0$
$\lambda=\frac{24}{27}=\frac{8}{9}$
\therefore Circle is
$x^{2}+y^{2}+\left(\frac{16}{9}-9\right) x+\left(\frac{29}{9}-12\right) y+29=0$
\therefore Center is $\left(\frac{65}{18}, \frac{14}{3}\right)$
54. Answer (B)
55. Answer (C)

Hint for Q. No. 54 and 55
Mathematical induction approach.
Solution for Q. No. 54 and 55
Put $n=2$
$\Rightarrow \quad f(1)+2 f(2)=6 f(2)$
$\Rightarrow \quad 4 f(2)=f(1)$
$\Rightarrow f(2)=\frac{1}{8}$
Similarly $f(3)=\frac{1}{12}, f(4)=\frac{1}{16} \ldots$ and so on
$\therefore f(n)=\frac{1}{4 n} \quad \therefore f(1010)=\frac{1}{4040}$
56. Answer $A(Q, R, S) ; B(Q) ; C(R, S) ; D(P, T)$

Hint : Equality hold conditions for I.T.F.
Solution :

$$
\begin{gathered}
\text { (A) }\left(\sin ^{-1} x\right)^{2}=\left(\sin ^{-1} y\right)^{2}=\frac{\pi^{2}}{4} \\
\Rightarrow x= \pm 1 \text { and } y= \pm 1 \\
\therefore \quad x^{3}+y^{3}=-2,0,2
\end{gathered}
$$

(B) $\left(\cos ^{-1} x\right)^{2}=\left(\cos ^{-1} y\right)^{2}=\pi^{2}$
$\Rightarrow x=y=-1$
$\therefore \quad x^{5}+y^{5}=-2$
(C) $\left(\sin ^{-1} x\right)^{2}=\frac{\pi^{2}}{4}$ and $\left(\cos ^{-1} y\right)^{2}=\pi^{2}$
$\Rightarrow \sin ^{-1} x= \pm \frac{\pi}{2}$ and $\cos ^{-1} y=\pi$
$\Rightarrow x= \pm 1$ and $y=-1$
(D) $\left|\sin ^{-1} x-\sin ^{-1} y\right|=\pi$
\Rightarrow either $\sin ^{-1} x=-\frac{\pi}{2}$ and $\sin ^{-1} y=\frac{\pi}{2}$
or $\sin ^{-1} x=\frac{\pi}{2}$ and $\sin ^{-1} y=-\frac{\pi}{2}$
$x=-1$ and $y=1$ or $x=1$ and $y=-1$

$$
\begin{aligned}
\therefore & x^{y}=(-1)^{1} \text { or }(1)^{-1} \\
& =-1 \text { or } 1
\end{aligned}
$$

57. Answer $A(S) ; B(Q, R, S, T) ; C(R) ; D(P, Q, R, S, T)$

Hint : Eccentricity formula for conic.

Solution :

(A) $\because \sqrt{c^{2}+d^{2}}=a, \sqrt{a^{2}-b^{2}}=c$
$\Rightarrow c^{2}+d^{2}=a^{2}$ and $a^{2}-b^{2}=c^{2}$
$\Rightarrow d=b \quad \Rightarrow \frac{d}{b}=1$
(B) Now $e_{1}=1-\frac{b^{2}}{a^{2}} \quad e_{2}=1+\frac{d^{2}}{c^{2}}$
$\Rightarrow \quad e_{1}^{2}+e_{2}^{2}=2+b^{2}\left(\frac{a^{2}-c^{2}}{a^{2} c^{2}}\right)$
$e_{1}+e_{2}=e_{1}^{2}+\frac{1}{e_{1}^{2}}>2$
(C) $2 \tan ^{-1}\left(\frac{d}{c}\right)=\frac{2 \pi}{3} \Rightarrow d=\sqrt{3} c \Rightarrow d^{2}=3 c^{2}$

$$
\Rightarrow a^{2}=4 c^{2} \quad \Rightarrow a=2 c
$$

$\therefore \quad 4 e_{1}=4 \sqrt{1-\frac{b^{2}}{a^{2}}}$

$$
=4 \sqrt{1-\frac{3 c^{2}}{4 c^{2}}}=2
$$

(D) $b^{2}=a^{2}\left(1-e_{1}^{2}\right)$
$\Rightarrow a^{2}=2 b^{2} \quad \Rightarrow c^{2}=b^{2}$
For P.O.I. $\frac{h^{2}}{b^{2}}-\frac{k^{2}}{b^{2}}=\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}$
$\Rightarrow h^{2}\left(\frac{a^{2}-b^{2}}{a^{2} b^{2}}\right)=\frac{2 k^{2}}{b^{2}}$
$\Rightarrow \frac{h^{2}}{k^{2}}=\frac{2 a^{2}}{a^{2} e_{1}^{2}}=4$
58. Answer (36)

Hint : Point of intersection of two normals.

Solution :

Let $P\left(t_{1}\right)$ and $Q\left(t_{2}\right)$ are points
$\therefore \quad t_{2}=2 t_{1}$
\because P.O.I of normals

$$
\begin{aligned}
& R\left(2 a+a\left(t_{1}^{2}+t_{1} t_{2}+t_{2}^{2}\right),-t_{1} t_{2}\left(t_{1}+t_{2}\right)\right) \\
& R\left(2+t_{1}^{2}+t_{1} t_{2}+t_{2}^{2},-t_{1} t_{2}\left(t_{1}+t_{2}\right)\right) \\
\therefore & x=2+7 t_{1}^{2}, \quad y=-6 t_{1}^{3} \\
& \left(\frac{x-2}{7}\right)^{3}=t_{1}^{6}=\left(\frac{-y}{6}\right)^{2}=\frac{y^{2}}{36}
\end{aligned}
$$

$\therefore \quad$ Locus is $y^{2}=\frac{36}{343}(x-2)^{3}$
$\therefore \quad k=36$
59. Answer (16)

Hint : Monotonicity of function.

Solution :

$\because x \in[-1,1]$
Also $f(x)$ is an increasing function in domain
$\therefore \quad p=f(-1)$ and $q=f(1)$
$\Rightarrow \quad p=-\frac{\pi}{2}-\frac{\pi}{2}+(-2)=-\pi-2$
and $q=\frac{\pi}{2}+\frac{\pi}{2}+6=\pi+6$
$\therefore \quad p+q=4 \quad \Rightarrow(p+q)^{2}=16$
60. Answer (45)

Hint : Linear inequalities of two variables.

Solution :

Total number of integral co-ordinates in shaded region are 45

All India Aakash Test Series for JEE (Advanced)-2020
 TEST - 2A (Paper-1) - Code-D

Test Date : 24/11/2019

ANSWERS

PHYSICS		CHEMISTRY		MATHEMATICS	
	(C)		(D)		(B)
	(D)		(B)		(A)
	(D)		(B)	43.	(D)
	(B)		(B)	44.	(B)
	(B)		(A)	45.	(C)
	(C)	26.	(B)		(B)
	(B, C, D)	27.	(A)	47.	(A, D)
	(B, D)	28.	(C)	48.	(C, D)
	(B, D)	29.	($A, B, C)$	49.	($A, B, C)$
	(B)	30.	($A, B, D)$	50.	(A, B)
	(A, B, D)	31.	(B, D)	51.	(B, C, D)
	(A)	32.	(C)	52.	(A)
		33.	(C)		(D)
		34.	(B)	54.	(B)
		35.	(C)	55.	(C)
16.	$A \rightarrow(P, T)$	36.	$A \rightarrow(Q, R, T)$	56.	$A \rightarrow(S)$
	$B \rightarrow(Q, R)$		$B \rightarrow(P)$		$\mathrm{B} \rightarrow(\mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T})$
	$C \rightarrow(R, S, T)$		$\mathrm{C} \rightarrow(\mathrm{R}, \mathrm{S}, \mathrm{T})$		$\mathrm{C} \rightarrow(\mathrm{R})$
	$\mathrm{D} \rightarrow(\mathrm{Q}, \mathrm{R})$		$\mathrm{D} \rightarrow(\mathrm{T})$		$\mathrm{D} \rightarrow(\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T})$
17.	$\mathrm{A} \rightarrow(\mathrm{P}, \mathrm{S})$	37.	$A \rightarrow(Q, S, T)$	57.	$A \rightarrow(Q, R, S)$
	$B \rightarrow(Q, R)$		$\mathrm{B} \rightarrow(\mathrm{P}, \mathrm{R}, \mathrm{S})$		$B \rightarrow(Q)$
	$\mathrm{C} \rightarrow(\mathrm{P}, \mathrm{S})$		$\mathrm{C} \rightarrow(\mathrm{P}, \mathrm{R}, \mathrm{S}, \mathrm{T})$		$\mathrm{C} \rightarrow(\mathrm{R}, \mathrm{S})$
	$\mathrm{D} \rightarrow(\mathrm{P}, \mathrm{R})$		$\mathrm{D} \rightarrow(\mathrm{Q}, \mathrm{R}, \mathrm{S})$		$\mathrm{D} \rightarrow(\mathrm{P}, \mathrm{T})$
	(29)	38.	(12)		(45)
19.	(50)		(04)		(16)
20.	(16)	40.	(25)	60.	(36)

HINTS \& SOLUTHONS

PART - I (PHYSICS)

1. Answer (C)

Hint: $E_{\mathrm{axis}}=\frac{q x}{4 \pi \varepsilon_{0}\left(R^{2}+x^{2}\right)^{3 / 2}}$

Solution:

$E=\frac{q}{4 \pi \varepsilon_{0} d^{2}}-\frac{q \times d}{4 \pi \varepsilon_{0}\left(d^{2}+R^{2}\right)^{3 / 2}}=\frac{3 q R^{2}}{8 \pi \varepsilon_{0} d^{4}}$
2. Answer (D)

Hint: Heat current remains constant

Solution :

$\frac{\frac{\left(T_{1}-T\right)}{L}}{\frac{L}{k 2 \pi a \times\left(\frac{a+b}{2}\right)}}=\frac{T_{1}-T_{2}}{\frac{L}{k \times \pi a \times b}}$
$\Rightarrow T=\frac{T_{1} a+T_{2} b}{(a+b)}$
3. Answer (D)

Hint: Use reverse symmetry concept
Solution:
Using KVL and KCL, we get

$$
\begin{aligned}
R_{\text {eq }} & =\frac{2 R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{\left(R_{1}+R_{2}+2 R_{3}\right)} \\
& =\frac{2 \times(2 \times 3)+(3 \times 1)+(1 \times 2)}{(2+3+1 \times 2)} \\
& =\frac{12+3+2}{7}=\frac{17}{7} \Omega
\end{aligned}
$$

4. Answer (B)

Hint: $Q=Q_{0} e^{-t / \tau}$ during discharging
Solution :

$$
\begin{aligned}
& Q_{0}=C V_{0}, C_{2}\left(\frac{C}{K}\right) \\
& \therefore V_{2}=\frac{C V_{0}}{\left(\frac{C}{K}\right)}=K V_{0} \\
& \tau=R \times C_{2}=\frac{R C}{K} \\
& \therefore V=V_{2} e^{-t / \tau} \\
& \Rightarrow \frac{V_{0}}{2}=K V_{0} \times e^{-\frac{t}{\tau}} \\
& \Rightarrow \frac{1}{2 K}=e^{-t / \tau}
\end{aligned}
$$

$\Rightarrow \ln (2 K)=\frac{t}{\tau}$
$\Rightarrow t=\tau \ln (2 K)$
$t=\frac{R C}{K} \ln (2 K)$
5. Answer (B)

Hint : At maximum temperature $\frac{d T}{d V}=0$

Solution :

$\left[P_{0}+(1-\alpha) V^{2}\right] V=n R T$
$\Rightarrow T=\frac{P_{0} V+(1-\alpha) V^{3}}{n R}$
$\therefore \frac{d T}{d V}=0$ at $V^{2}=\frac{P_{0}}{3(\alpha-1)}$
$\therefore P=P_{0}+(1-\alpha) \times \frac{P_{0}}{3(\alpha-1)}$
$\Rightarrow P=\frac{2 P_{0}}{3}$
6. Answer (C)

Hint: Second overtone contains 3 loops

Solution:

$\frac{\lambda}{2}=\frac{2}{3} \Rightarrow \lambda=\frac{4}{3} \mathrm{~m}$
Amp. $=2 A \sin k x=A_{\max } \sin (k x)$
$\therefore A=\left(A_{\max }\right) \sin \left(\frac{2 \pi \times 3}{4} \times \frac{1}{6}\right)$
$\Rightarrow A=(2) \times\left(\frac{1}{\sqrt{2}}\right) \mathrm{mm}=\sqrt{2} \mathrm{~mm}$
7. Answer (B, C, D)

Hint : Use KVL and KCL.

Solution :

$$
\begin{aligned}
& Q_{\text {total }}=180-70=110 \mu \mathrm{C} \\
& q_{A}=\frac{2}{2+6+3} \times(110)=20 \mu \mathrm{C} \\
& q_{B}=\frac{6}{2+3+6} \times(110)=60 \mu \mathrm{C} \\
& q_{C}=\frac{3}{2+6+3} \times(110)=30 \mu \mathrm{C} \\
& \Delta q_{S}=(20+30)-(-70)=120 \mu \mathrm{C}
\end{aligned}
$$

8. Answer (B, D)

Hint : $V_{\text {rms }}^{2}=\frac{\int u^{2} d N}{N}$

Solution :

$N=$ Area $=\frac{1}{2} \times 10 \times 10=50$
$\frac{d N}{d u}=u+10$
$\therefore V_{\text {rms }}^{2}=\frac{\int u^{2} \times(10-u) d u}{N}=\frac{\int_{0}^{10}\left(10 u^{2}-u^{3}\right) d u}{50}$
$V_{r m s}^{2}=\frac{1000 \times(4-3)}{12 \times 50}=\frac{2500}{3 \times 50}$
$\Rightarrow V_{m s}=\sqrt{\frac{50}{3}} \mathrm{~m} / \mathrm{s}$
9. Answer (B, D)

Hint : Apparent wavelength changes when source moves.

Solution :

$f^{\prime}=\frac{(340-10)}{(340-20)} \times(200)=206 \mathrm{~Hz}$
$\lambda^{\prime}=\lambda_{0}=V_{s} \times T=\frac{340}{200}-20 \times \frac{1}{200}=1.6 \mathrm{~m}$
10. Answer (B)

Hint : Use Gauss's law

Solution :

σ on outer surface becomes uniform. Potential at outside points is only due to charge on outer surface of shell.
$\therefore V_{A}=V_{B}$
11. Answer (A, B, D)

Hint: Use KVL and KCL.

Solution :

$R_{\text {eq }}=1+\frac{20}{9}=\frac{29}{9} \Omega$
$\therefore I_{0}=\frac{58}{(29 / 9)}=18 \mathrm{~A}$
$\therefore 1_{(2 \Omega)}=\frac{18}{2}=9 \mathrm{~A}$
$1_{(3 \Omega)}=\frac{6}{6+3} \times 9=6 \mathrm{~A}$
$I_{(5 \Omega)}=\frac{4}{9} \times(18)=8 \mathrm{~A}$

$$
\begin{aligned}
& I_{(4 \Omega)}=\frac{5}{9} \times(18)=10 \mathrm{~A} \\
& \therefore V_{(4 \Omega)}=4 \times 10=40 \mathrm{~V} \\
& P_{(5 \Omega)}=8^{2} \times 5=320 \mathrm{~W}
\end{aligned}
$$

12. Answer (A)

Hint: Flux is proportional to charge

Solution :

$$
\begin{aligned}
& \frac{2 \pi(1-\cos \alpha)}{4 \pi} \times\left(\frac{q_{1}}{\varepsilon_{0}}\right)=\frac{2 \pi(1-\cos \beta)}{4 \pi} \times\left(\frac{q_{2}}{\varepsilon_{0}}\right) \\
& \Rightarrow \frac{q_{1}}{q_{2}}=\frac{1-\cos \beta}{1-\cos \alpha}=\frac{1-0}{1-\frac{1}{2}}=2
\end{aligned}
$$

13. Answer (C)

Hint : Flux is proportional to charge

Solution:

$q_{1}=3 q_{2}$
\Rightarrow one third of total flux of q_{1} will terminate at q_{2}
$\therefore \frac{4 \pi}{3}=2 \pi\left(1-\cos \alpha_{\max }\right)$
$\Rightarrow \cos \left(\alpha_{\text {max }}\right)=1-\frac{2}{3}=\frac{1}{3}$
$\Rightarrow \tan \left(\alpha_{\max }\right)=2 \sqrt{2} \Rightarrow \alpha_{\max }=\tan ^{-1}(2 \sqrt{2})$
14. Answer (C)

Hint : $A \rightarrow B$ Isochoric
$C \rightarrow D$ Isochoric
$B \rightarrow C$ Isothermal
$D \rightarrow A$ Isothermal
15. Answer (D)

Hint : W isothermal $=n R T_{0} \ln \left(\frac{V_{2}}{V_{1}}\right)$

Solution of Q.Nos. 14 and 15

$$
\begin{aligned}
& W_{B C}=2 P_{0} V_{0} \ln \left(\frac{V_{C}}{V_{B}}\right)=-P_{0} V_{0} \ln (2) \\
& \Rightarrow V_{C}=\frac{V_{0}}{\sqrt{2}} \\
& \therefore P_{C}=\frac{2 P_{0} V_{0}}{V_{C}}=2 \sqrt{2} P_{0} \\
& \therefore W_{D A}=\left(\sqrt{2} P_{0}\right)\left(\frac{V_{0}}{\sqrt{2}}\right) \ln (\sqrt{2})=\frac{P_{0} V_{0}}{2} \ln (2)
\end{aligned}
$$

$\therefore W_{A B C D A}=0+-P_{0} V_{0} \ln (2)+0+\frac{1}{2} P_{0} V_{0} \ln (2)$

$$
=-\frac{P_{0} V_{0}}{2} \ln (2)
$$

16. Answer $A(P, T) ; B(Q, R) ; C(R, S, T) ; D(Q, R)$

Hint : Use Gauss's law.

Solution :

Electric field is uniform in spherical cavity in sphere and in cylindrical cavity in cylinder.
17. Answer $A(P, S) ; B(Q, R) ; C(P, S) ; D(P, R)$

Hint : Capacitance increases due to slab.

Solution :

Total capacitance increases, so charge on A increases as well as voltage increases.
\therefore Voltage on B decreases. So, charge on it decreases
$\therefore \quad$ Charge on C and D increases
18. Answer (29)

Hint: $B C$ is isothermal

Solution :

$\left(3 P_{0}\right) \times V_{C}=P_{0} \times V_{0}$
$\Rightarrow V_{c}=\frac{V_{0}}{3}$
$\because C A$ is a adiabatic.
$\therefore\left(3 P_{0}\right) \times\left(\frac{V_{0}}{3}\right)^{r}=\left(\frac{P_{0}}{2}\right)\left(V_{0}\right)^{r}$
$\Rightarrow \gamma=\frac{\ln 6}{\ln 3}=\frac{\ln 2+\ln 3}{\ln 3}=\frac{18}{11}$
$\therefore \quad p+q=18+11=29$
19. Answer (50)

Hint : Voltmeter are not ideal

Solution :

Let resistance of each voltmeter be R_{0}
$\therefore R i^{\prime}=20 R_{0}(I-i)$ \qquad
and $2 R i=30$

$$
\Rightarrow i^{\prime}=\frac{3}{4} i, \quad \therefore i_{\left(V_{2}\right)}=I-i^{\prime}=I-\frac{3 i}{4}
$$

$\therefore 2 R i^{\prime}=30=R_{0}(I-i)=R_{0}\left(I-\frac{3 i}{4}\right)$
$\Rightarrow i=400 \mu \mathrm{~A}$
$\therefore R=\frac{20}{400 \times 10^{-6}}=50 \times 10^{3} \Omega=50 \mathrm{k} \Omega$
20. Answer (16)

Hint: Use $P V=n R T$

Solution:

$$
T=T_{0}+\frac{T_{0}}{L} x
$$

$\therefore \int d n=\int_{x=0}^{L} \frac{P \times A d x}{R\left(T_{0}+\frac{T_{0}}{L} x\right)}$
$\Rightarrow n=\frac{P A L}{R T_{0}} \ln (2)$
$\Rightarrow n=\frac{P A L}{4 R T_{0}} \ln (16)$
$\therefore 16$

PART - II (CHEMISTRY)

21. Answer (D)

Hint:

Solution :

22. Answer (B)

Hint : Compound which are planar, has $(4 n+2) \pi \mathrm{e}^{-}$are aromatic

Solution :

Boron has vacant $2 p$ orbital hence planar $\left(s p^{2}\right)$ and has $6 \pi \mathrm{e}^{-}$
23. Answer (B)

Hint : Hydrolysis of ester under alkaline condition occurs as

Solution :

Greater the extent of electron withdrawing strength of R, greater will be the rate of reaction
24. Answer (B)

Hint: In DMF $S_{N} 2$ mechanism is favoured during nucleophilic substitution reaction.

Solution :

Electron withdrawing group increases the tendency of $\mathrm{S}_{\mathrm{N}} 2$.
25. Answer (A)

Hint : A paired with $T(A=T)$

Solution :

G paired with $C(G \equiv C)$
26. Answer (B)

Hint :

Solution :

Heroin

Chloramphenicol

27. Answer (A)

Hint :

Solution :

28. Answer (C)

Hint : Hoffmann bromamide reaction.

Solution :

T
29. Answer (A, B, C)

Hint :

Solution :

[This is cope elimination, which occurs through $5 y n$
elimination
\therefore Major elimination occurs from this site

(Q)

(R)

Minoc
30. Answer (A, B, D)

Hint :

Solution :

Formed alcohol is 2°

31. Answer (B, D)

Hint :

\qquad

$$
\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}_{3}
$$

Solution :
 mechanism from the less hindered site]

Major

Solution :

36. Answer $A(Q, R, T) ; B(P) ; C(R, S, T) ; D(T)$

Hint :

Solution :

In aldol condensation $\mathrm{H}_{2} \mathrm{O}$ elimination through E1cB mechanism.

37. Answer A(Q, S, T); B(P, R, S); C(P, R, S, T); $D(Q, R, S)$

Hint :
Reducing sugars
Non-reducing Sugars
Maltose
Lactose
Cellulose
Glucose Sucrose
Fructose

Solution :

Sucrose $\longrightarrow \alpha$-glucose $+\beta$-fructose
Maltose $\longrightarrow 2 \alpha$-glucose
Lactose $\longrightarrow \beta$-galactose $+\beta$-glucose
Cellulose $\longrightarrow \beta$-glucose
38. Answer (12)

Hint :

Solution :

Total 3 isomers of (B) are formed

Degree of unsaturation of (C) is 9
39. Answer (04)

Hint : Since, six $1^{\circ} \mathrm{H}^{\prime} \mathrm{s}$ contribute to the 42% yield of 1 -chloro propane, we can say that one $1^{\circ} \mathrm{H}$ leads to $7 \%(42 / 6)$ of this product. Similarly each 2° hydrogen contributes 28% (56/2) yield to the 2-chloro propane product.

Solution :

So the relative rate of the reaction of each $2^{\circ} \mathrm{H}$ compared to $1^{\circ} \mathrm{H}$ is $\frac{28}{7}=4$
40. Answer (25)

Hint: Since, the sample has $[\alpha]$ to be +4.25 it means $(+)$ alanine is present in excess.

Solution :

Optical purity $=\frac{4.25}{8.5} \times 100=50 \%$. This means that 50% of the sample is pure (+) alanine and the other 50% is racemic. In which equal amount (i.e. 25% each) of $(+)$ and $(-)$ alanine is present.

PART - III (MATHEMATICS)

41. Answer (B)

Hint: Tangency condition.

Solution :

Let the line is $y=m x+5$
$\because m>0$ and is least \therefore the line
should touch the ellipse
$\Rightarrow \quad 25=16 m^{2}+9$
$\Rightarrow \quad 16 m^{2}=16$
$\Rightarrow \quad m= \pm 1 \quad \Rightarrow m=1$
42. Answer (A)

Hint : Think of quadratic equation to solve.

Solution :

Let equation of circle is

$$
\begin{equation*}
(x-r)^{2}+y^{2}=r^{2} \tag{1}
\end{equation*}
$$

$\Rightarrow \quad\left(a t^{2}-r\right)^{2}+4 a^{2} t^{2} \geq r^{2}$
$\Rightarrow \quad a^{2} t^{4}+r^{2}-2 r a t^{2}+4 a^{2} t^{2} \geq r^{2}$
$\Rightarrow \quad a^{2} t^{4}-2 a r t^{2}+4 a^{2} t^{2} \geq 0$
$\Rightarrow a t^{2}-2 r+4 a \geq 0$
$\Rightarrow \quad r \leq \frac{a}{2}\left(t^{2}+4\right) \leq 2 a$
$\therefore \quad$ Maximum value of $r=2 a$
43. Answer (D)

Hint : Find chord of contact equation.

Solution :

Equation of tangent at $(1,2)$ to C_{1} is
$x+2 y-5=0$
Let point T is (h, k)
$\therefore \quad$ Equation of C.O.C. w.r.t. C_{2} is
$x h+y k-9=0$
$\Rightarrow \quad \frac{h}{1}=\frac{k}{2}=\frac{9}{5}$
$\Rightarrow \quad h=\frac{9}{5}, k=\frac{18}{5}$
44. Answer (B)

Hint : Use condition for tangency.

Solution :

Area of trapezium $=\frac{1}{2}(a+3 a)(2 r)=4$
$\Rightarrow \quad a r=1$
Equation of $B C$ is $y=-r^{2}\left(x-\frac{3}{r}\right)$
$\Rightarrow \quad y+r^{2} x-3 r=0$
As $B C$ is a tangent
$\Rightarrow \quad \frac{\left|r+r^{3}-3 r\right|}{\sqrt{1+r^{4}}}=r$
$\Rightarrow \quad r=\frac{\sqrt{3}}{2}$
45. Answer (C)

Hint : First find point of intersection of lines.

Solution :

The vertices of the triangle are

$$
O(0,0), A\left(\frac{1}{\ell+m}, \frac{1}{\ell+m}\right), B\left(\frac{1}{\ell-m}, \frac{-1}{\ell-m}\right)
$$

Let circumcenter is (h, k)
$\therefore \quad h=\frac{\ell}{\ell^{2}-m^{2}}, k=\frac{-m}{\ell^{2}-m^{2}}$
$\Rightarrow \quad h^{2}+k^{2}=\frac{1}{\left(\ell^{2}-m^{2}\right)^{2}}$ and $h^{2}-k^{2}=\frac{1}{\ell^{2}-m^{2}}$
\Rightarrow Required locus $x^{2}+y^{2}=\left(x^{2}-y^{2}\right)^{2}$
46. Answer (B)

Hints: Circumcentre is mid point of hypotenuse.

Solution :

Clearly $a>2, b>2$
$\Rightarrow \quad \frac{1}{a}<\frac{1}{2}, \frac{1}{b}<2$
$\Rightarrow \quad \frac{1}{a}+\frac{1}{b}<1$
Also, $r S=\Delta$
$\Rightarrow \quad 1\left(\frac{a+b+\sqrt{a^{2}+b^{2}}}{2}\right)=\frac{1}{2} a b$
$\Rightarrow \quad \frac{1}{a}+\frac{1}{b}+\sqrt{\frac{a^{2}+b^{2}}{a^{2} b^{2}}}=1$
47. Answer (A, D)

Hint : Form family of circles.

Solution :

Circle with points $\left(2 t_{1}, \frac{2}{t_{1}}\right)$ and $\left(2 t_{2}, \frac{2}{t_{2}}\right)$ as diameter is
$\left(x-2 t_{1}\right)\left(x-2 t_{2}\right)+\left(y-\frac{2}{t_{1}}\right)\left(y-\frac{2}{t_{2}}\right)=0$
Also $t_{1} t_{2}=-1$
Hence the equation of circle is $\left(x^{2}+y^{2}-8\right)-2$
$\left(t_{1}+t_{2}\right)(x-y)=0$
The point of intersection of $x^{2}+y^{2}=8$ and $x-y=0$ are $(2,2)$ and $(-2,-2)$
48. Answer (C, D)

Hint : Property of normal.

Solution :

\because Normal intersects the parabola $y^{2}=4 a x$ again
$\therefore x_{1} x_{2}=4 a^{2}$ and $y_{1} y_{2}=8 a^{2}$
$\because a=2 \quad \Rightarrow x_{1} x_{2}=16$ and $y_{1} y_{2}=32$
49. Answer (A, B, C)

Hint : Concept of orthogonality of two curves.

Solution :

Due to orthogonal intersection of ellipse and hyperbola
$a^{2}+b^{2}=16$
$\Rightarrow \quad a^{2} e^{2}=16$
$\Rightarrow \quad a^{2}=4 \quad \Rightarrow \quad b^{2}=12$
$\therefore \quad$ No director circle of hyperbola is possible.
50. Answer (A, B)

Hint : Conversion into trigonometric function values.

Solution :

$$
\begin{aligned}
& \because \tan \alpha=\frac{36}{77}, \quad \tan \beta=\frac{3}{4}, \quad \tan \gamma=\frac{8}{15} \\
& \tan (\alpha+\beta+\gamma)=\frac{\Sigma(\tan \alpha)-\pi(\tan \alpha)}{1-\Sigma \tan \alpha \tan \beta}=\infty \\
& \Rightarrow \quad \alpha+\beta+\gamma=\frac{\pi}{2}
\end{aligned}
$$

$\therefore \quad$ Option (A) and (B) are correct.
51. Answer (B, C, D)

Hint : A.M \geq G.M
Solution :
$\therefore u v<0 \Rightarrow u+\frac{1}{u} \geq 2, \quad v+\frac{1}{v} \leq-2$
or $\quad u+\frac{1}{u} \leq-2 \quad$ or $\quad v+\frac{1}{v} \geq 2$
$\Rightarrow \quad \sec ^{-1}\left(u+\frac{1}{u}\right) \in\left[\frac{\pi}{3}, \frac{\pi}{2}\right)$
$\sec ^{-1}\left(v+\frac{1}{v}\right) \in\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right]$
$\therefore \quad t \in\left(\frac{5 \pi}{6}, \frac{7 \pi}{6}\right)$
52. Answer (A)
53. Answer (D)

Hint for Q. No. 52 and 53

Family of circles.

Solution for Q. No. 52 and 53

Let Σ is $x^{2}+y^{2}-9 x-12 y+53+$ $\lambda(2 x+3 y-27)=0$
Given circle $x^{2}+y^{2}-4 x-6 y-3=0$
$\therefore \quad$ Equation of common chord

$$
-5 x+6 y+56+\lambda(2 x+3 y-27)=0
$$

$\therefore \quad$ Chord passes through the point of intersection of $5 x+6 y-56=0$ and $2 x+3 y-27=0$
i.e. $\left(2, \frac{23}{3}\right)$
$\because \quad \Sigma$ intersects $x^{2}+y^{2}=29$ orthogonally.
$53-27 \lambda-29=0$
$\lambda=\frac{24}{27}=\frac{8}{9}$
\therefore Circle is
$x^{2}+y^{2}+\left(\frac{16}{9}-9\right) x+\left(\frac{29}{9}-12\right) y+29=0$
\therefore Center is $\left(\frac{65}{18}, \frac{14}{3}\right)$
54. Answer (B)
55. Answer (C)

Hind for Q. No. 54 and 55

Mathematical induction approach.
Solution for Q. No. 54 and 55
Put $n=2$
$\Rightarrow \quad f(1)+2 f(2)=6 f(2)$
$\Rightarrow \quad 4 f(2)=f(1)$
$\Rightarrow \quad f(2)=\frac{1}{8}$
Similarly $f(3)=\frac{1}{12}, f(4)=\frac{1}{16} \ldots$ and so on
$\therefore f(n)=\frac{1}{4 n} \quad \therefore f(1010)=\frac{1}{4040}$
56. Answer A(S); B(Q, R, S, T); C(R); D(P, Q, R, S, T)

Hint : Eccentricity formula for conic.

Solution :

(A) $\because \sqrt{c^{2}+d^{2}}=a ; \sqrt{a^{2}-b^{2}}=c$
$\Rightarrow c^{2}+d^{2}=a^{2}$ and $a^{2}-b^{2}=c^{2}$

$$
\Rightarrow d=b \quad \Rightarrow \frac{d}{b}=1
$$

(B) Now $e_{1}=1-\frac{b^{2}}{a^{2}} \quad e_{2}=1+\frac{d^{2}}{c^{2}}$
$\Rightarrow \quad e_{1}^{2}+e_{2}^{2}=2+b^{2}\left(\frac{a^{2}-c^{2}}{a^{2} c^{2}}\right)$
$e_{1}+e_{2}=e_{1}^{2}+\frac{1}{e_{1}^{2}}>2$
(C) $2 \tan ^{-1}\left(\frac{d}{c}\right)=\frac{2 \pi}{3} \Rightarrow d=\sqrt{3} c \Rightarrow d^{2}=3 c^{2}$

$$
\Rightarrow a^{2}=4 c^{2} \quad \Rightarrow a=2 c
$$

$$
\therefore \quad 4 e_{1}=4 \sqrt{1-\frac{b^{2}}{a^{2}}}=4 \sqrt{1-\frac{3 c^{2}}{4 c^{2}}}=2
$$

(D) $b^{2}=a^{2}\left(1-e_{1}^{2}\right)$

$$
\Rightarrow a^{2}=2 b^{2} \quad \Rightarrow c^{2}=b^{2}
$$

For P.O.I. $\frac{h^{2}}{b^{2}}-\frac{k^{2}}{b^{2}}=\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}$
$\Rightarrow h^{2}\left(\frac{a^{2}-b^{2}}{a^{2} b^{2}}\right)=\frac{2 k^{2}}{b^{2}}$
$\Rightarrow \frac{h^{2}}{k^{2}}=\frac{2 a^{2}}{a^{2} e_{1}^{2}}=4$
57. Answer $A(Q, R, S) ; B(Q) ; C(R, S) ; D(P, T)$

Hint : Equality hold conditions for I.T.F.

Solution :

(A) $\left(\sin ^{-1} x\right)^{2}=\left(\sin ^{-1} y\right)^{2}=\frac{\pi^{2}}{4}$

$$
\Rightarrow \quad x= \pm 1 \text { and } y= \pm 1
$$

$\therefore \quad x^{3}+y^{3}=-2,0,2$
(B) $\left(\cos ^{-1} x\right)^{2}=\left(\cos ^{-1} y\right)^{2}=\pi^{2}$
$\Rightarrow x=y=-1$
$\therefore x^{5}+y^{5}=-2$
(C) $\left(\sin ^{-1} x\right)^{2}=\frac{\pi^{2}}{4}$ and $\left(\cos ^{-1} y\right)^{2}=\pi^{2}$
$\Rightarrow \sin ^{-1} x= \pm \frac{\pi}{2}$ and $\cos ^{-1} y=\pi$
$\Rightarrow x= \pm 1$ and $y=-1$
(D) $\left|\sin ^{-1} x-\sin ^{-1} y\right|=\pi$
\Rightarrow either $\sin ^{-1} x=-\frac{\pi}{2}$ and $\sin ^{-1} y=\frac{\pi}{2}$
or $\sin ^{-1} x=\frac{\pi}{2}$ and $\sin ^{-1} y=-\frac{\pi}{2}$
$x=-1$ and $y=1$ or $x=1$ and $y=-1$

$$
\begin{array}{ll}
\therefore \quad & x^{y}=(-1)^{1} \text { or }(1)^{-1} \\
& =-1 \text { or } 1
\end{array}
$$

58. Answer (45)

Hint : Linear inequalities of two variables.

Solution :

Total number of integral co-ordinates in shaded region are 45

59. Answer (16)

Hint : Monotonicity of function.

Solution :

$\because x \in[-1,1]$
Also $f(x)$ is an increasing function in domain
$\therefore \quad p=f(-1)$ and $q=f(1)$
$\Rightarrow \quad p=-\frac{\pi}{2}-\frac{\pi}{2}+(-2)=-\pi-2$
and $q=\frac{\pi}{2}+\frac{\pi}{2}+6=\pi+6$
$\therefore \quad p+q=4 \quad \Rightarrow(p+q)^{2}=16$
60. Answer (36)

Hint : Point of intersection of two normals.

Solution :

Let $P\left(t_{1}\right)$ and $Q\left(t_{2}\right)$ are points
$\therefore \quad t_{2}=2 t_{1}$
\because P.O.I of normals

$$
\begin{aligned}
& R\left(2 a+a\left(t_{1}^{2}+t_{1} t_{2}+t_{2}^{2}\right),-t_{1} t_{2}\left(t_{1}+t_{2}\right)\right) \\
& R\left(2+t_{1}^{2}+t_{1} t_{2}+t_{2}^{2},-t_{1} t_{2}\left(t_{1}+t_{2}\right)\right) \\
& \therefore \quad x=2+7 t_{1}^{2}, \quad y=-6 t_{1}^{3} \\
& \left(\frac{x-2}{7}\right)^{3}=t_{1}^{6}=\left(\frac{-y}{6}\right)^{2}=\frac{y^{2}}{36}
\end{aligned}
$$

$\therefore \quad$ Locus is $y^{2}=\frac{36}{343}(x-2)^{3}$
$\therefore \quad k=36$

