All India Aakash Test Series for JEE (Advanced)-2020

TEST - 4A (Paper-1) - Code-A

Test Date : 24/11/2019

ANSWERS

PHYSICS

1. (2)
2. (7)
3. (3)
4. (2)
5. (6)
$6 . \quad(2)$
6. (4)
7. (5)
8. (A, D)
9. (A, B, C)
10. (A, B, C)
11. (B, C)
12. (A, C, D)
13. (B, C, D)
14. (A, B)
15. (A, C)
16. (A, C)
17. (B, D)
18. $\quad \mathrm{A} \rightarrow(\mathrm{Q})$
$B \rightarrow(S)$
$C \rightarrow(R, T)$
$\mathrm{D} \rightarrow(\mathrm{P})$
19.

$A \rightarrow(Q)$
$B \rightarrow(S)$
$C \rightarrow(P, R)$
$D \rightarrow(T)$

CHEMISTRY

21. (1)
22. (5)
23. (8)
24. (3)
25. (4)
26. (3)
27. (5)
28. (6)
29. (A, B)
30. (A, B)
31. (A, B, D)
32. (B, D)
33. (C)
34. (A, C)
35. (A, B, C, D)
36. (C)
37. (C, D)
38. (A, B, C)
39. $A \rightarrow(P, R)$
$B \rightarrow(Q)$
$\mathrm{C} \rightarrow(\mathrm{Q}, \mathrm{S}, \mathrm{T})$
$\mathrm{D} \rightarrow(\mathrm{Q})$
40. $\quad \mathrm{A} \rightarrow(\mathrm{P}, \mathrm{Q}, \mathrm{S})$
$B \rightarrow(P, R)$
$\mathrm{C} \rightarrow(\mathrm{P}, \mathrm{R}, \mathrm{T})$
$D \rightarrow(R)$

MATHEMATICS

41. (4)
42. (5)
43. (2)
44. (5)
45. (6)
46. (7)
47. (9)
48. (4)
49. (B, C)
50. (A, B, D)
51. (A, B, C)
52. (A, C, D)
53. (B, C, D)
54. (B, C, D)
55. (B, C, D)
56. (A, C, D)
57. (B, D)
58. (A, C)
59. $\quad A \rightarrow(T)$
$B \rightarrow(Q)$
$C \rightarrow(P, R)$
D \rightarrow (S)
60. $\quad \mathrm{A} \rightarrow(\mathrm{S}, \mathrm{T})$
$B \rightarrow(P, S)$
$C \rightarrow(T)$
$D \rightarrow(R, T)$

HINTS \& SOLUTIONS

PART - I (PHYSICS)

1. Answer (2)

Hint : $\frac{h c}{X_{\text {min }}}=\Delta E-\phi$

Solution :

$$
\begin{align*}
& \frac{\lambda_{\mathrm{H}_{2}}}{\lambda_{\text {gas }}}=\frac{\sqrt{2 m\left(\frac{3}{4} z^{2} \Delta E_{0}-\phi\right)}}{\sqrt{2 m\left(\frac{3}{4} \Delta E_{0}-\phi\right)}} \\
\Rightarrow & \frac{\frac{3}{4} \Delta E_{0} z^{2}-\phi}{\frac{3}{4} \Delta E_{0}-\phi}=\frac{61}{10} \tag{i}
\end{align*}
$$

Also, $\frac{3}{4} \Delta E_{0} z^{2}-\frac{\Delta E_{0} z^{2}}{4}=2 \Delta E_{0}$
$\Rightarrow \frac{\Delta E_{0} z^{2}}{2}=2 \Delta E_{0} \quad \therefore z=2$
Now in equation (i)

$$
\begin{aligned}
& 10\left(3 \Delta E_{0}-\phi\right)=61\left(\frac{3}{4} \Delta E_{0}-\phi\right) \\
\Rightarrow & 30 \Delta E_{0}-10 \phi=\frac{183}{4} \Delta E_{0}-61 \phi \\
\Rightarrow & 51 \phi=\frac{63}{4} \Delta E_{0} \\
\Rightarrow & \phi=\frac{63 \times 13.6}{4 \times 51} \mathrm{eV}=\frac{21 \times 2}{10} \mathrm{eV} \\
\therefore & K=2
\end{aligned}
$$

2. Answer (7)

Hint : $A_{R}^{2}=A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \phi$

Solution :

Let the amplitude of wave through
S_{1} and S_{2} be A. So, if $A^{2}=I_{0}$
Then $4 A^{2}=I \Rightarrow A^{2}=\frac{I}{4}$
After passing through P_{1} amplitude would be A and after passing through P_{2} amplitude would be $\frac{A}{2}$

$$
\begin{aligned}
& \Delta x \\
&=\left(\mu_{1} t-\mu 2 t\right)=0.5 \times 40 \times 10^{-6} \\
& \therefore \quad \Delta \phi=\frac{1}{2} \times 40 \times 10^{-6} \times \frac{2 \pi}{4000} \times 10^{10}=50 \times 2 \pi
\end{aligned}
$$

So, construction interference would occur at O
$\therefore \quad A_{\text {result }}=A+\frac{A}{2}=\frac{3 A}{2}$
and $I^{\prime}=\frac{9}{4} A^{2}=\frac{9}{4} \cdot \frac{I}{4}=\left(\frac{9}{16}\right) I$
$\therefore \quad x=9, y=16$
$\Rightarrow y-x=7$
3. Answer (3)

Hint : $m v_{0}=2 m v \cos 30^{\circ} ; \frac{1}{2} m v_{0}^{2}=x\left[\frac{3}{4} \Delta E_{0}\right]$

Solution :

Let the final speed of (both) the H -atom and neutron is v then, $m v_{0}=2 m v \cos 30^{\circ}$
$\Rightarrow \quad v=\frac{v_{0}}{\sqrt{3}}$
Also, $\frac{1}{2} m v_{0}^{2}=\frac{1}{2} \cdot 2 m \cdot \frac{v_{0}^{2}}{3}+\frac{3}{4} \Delta E_{0}$
$\therefore \quad \frac{1}{2} m v_{0}^{2}\left(1-\frac{2}{3}\right)=\frac{3}{4} \Delta E_{0}$
$\Rightarrow \frac{1}{2} m v_{0}^{2}=\frac{9}{4} \Delta E_{0}$
$\because \quad \frac{1}{2} m v_{0}^{2}=x\left(\frac{3}{4} \Delta E_{0}\right)$
$\therefore \quad x\left[\frac{3}{4} \Delta E_{0}\right]=\frac{9}{4} \Delta E_{0}$
$\therefore \quad x=3$
4. Answer (2)

Hint : $d \sin \theta=(2 \mu t+t)-2 \mu t$
Solution :

$$
d \sin \theta=(2 \mu t+t)-2 \mu t
$$

$\Rightarrow \quad d \frac{y}{D}=t \Rightarrow \quad y=\frac{D t}{d}$
$\Rightarrow \quad y=\frac{1 \times 2 \times 10^{-5}}{1 \times 10^{-3}}=2 \times 10^{-2} \mathrm{~m}$
5. Answer (6)

Hint : $\Delta E_{0}\left|1-\frac{1}{n^{2}}\right|=\Delta E$

Solution :

$\Delta E=30 \mathrm{eV}$
42.5% of $30 \mathrm{eV}=12.75 \mathrm{eV}$
$13.6\left|1-\frac{1}{n^{2}}\right|=12.75$
So we get $n=4$ (is the energy level to which hydrogen gets excited)
So, number of wavelengths $=6$
6. Answer (2)

Hint : $\left.d \sin \theta=\frac{\lambda}{2} \quad \right\rvert\,$ for $1^{\text {st }}$ minima $\theta=0.75^{\circ} \mid$

Solution :

For first minima $\theta=0.75^{\circ}$
$\therefore \quad d=\frac{\lambda}{2 \sin \left(0.75^{\circ}\right)}=1.98 \times 10^{-5} \mathrm{~m}$
$\Rightarrow d \approx 2 \times 10^{-2} \mathrm{~mm}$
7. Answer (4)

Hint : $\Delta E($ for reaction $)=4(7.30 \mathrm{MeV})-3(2.40 \mathrm{MeV})$

$$
-2(1.00 \mathrm{MeV})
$$

Solution :

$\Delta E($ for reaction $)=[4(7.30)-3(2.40)-2(1.0)] \mathrm{MeV}$
$\Rightarrow \Delta E=20 \mathrm{MeV}$
$\Rightarrow \quad \frac{1}{5}$ th of this energy will be taken away by helium and rest are for neutron.
8. Answer (5)

Hint :
Minima will be at the position where path differences are $4.5 \lambda, 3.5 \lambda, 2.5 \lambda, 1.5 \lambda, 0.5 \lambda$.

Solution :

Minima will be at those points where path differences are $4.5 \lambda, 3.5 \lambda, 2.5 \lambda, 1.5 \lambda$ and 0.5λ
So five minima are observed.
9. Answer (A, D)

Hint : Effective optical path difference :
$\mu_{2} t_{2}-\mu_{1} t_{1}+\left(t_{1}-t_{2}\right)$

Solution :

If $t_{1}>t_{2}$
Then phase lead by wave from S_{2}
$\left[\mu_{2} t_{2}+\left(t_{1}-t_{2}\right)-\mu_{1} t_{1}\right]$
So f ring will shift towards S_{2} to counter that much extra lead of phase.
10. Answer (A, B, C)

Hint :
The least count of the vernier caliper is the difference of the smallest unit on vernier scale and main scale.

Solution :

The least count of the vernier caliper is the difference of the smallest unit on vernier scale and main scale.
11. Answer (A, B ,C)

Hint : $\frac{h c}{\lambda}=\Delta E_{0} Z^{2}\left(\frac{1}{n^{2}}-\frac{1}{m^{2}}\right)$

Solution :

$$
\begin{aligned}
& \frac{h c}{\lambda_{B}}=\Delta E_{0} Z^{2}\left(\frac{1}{4}-\frac{1}{9}\right)=\frac{5}{36} \Delta E_{0} Z^{2} \\
\therefore \quad & \lambda_{B}=\frac{h c}{\Delta E_{0} Z^{2}} \frac{36}{5} \\
& \lambda_{L}=\frac{h c}{\Delta E_{0} Z^{2}} \\
\because \quad & \lambda_{B}-\lambda_{L}=\Delta \lambda=\frac{h c}{\Delta E_{0} Z^{2}} \cdot \frac{31}{5} \\
\Rightarrow & \frac{5}{31} \Delta \lambda=\left(\frac{h c}{\Delta E_{0} Z^{2}}\right) \\
\because \quad & \Delta E_{0}=R c h \\
\therefore \quad & \frac{5}{31} \Delta \lambda \cdot R h c=\frac{h c}{Z^{2}} \\
\Rightarrow & R=\frac{31}{5 \Delta \lambda \cdot Z^{2}}
\end{aligned}
$$

Shortest wavelength of Balmer series

$$
\begin{aligned}
& \frac{h c}{\lambda_{B}^{\prime}}=\frac{\Delta E_{0} Z^{2}}{4} \\
\Rightarrow \quad \lambda_{B}^{\prime} & =4\left[\frac{h c}{\Delta E_{0} Z^{2}}\right] \\
\Rightarrow \quad & \lambda_{B}^{\prime}=4\left[\frac{5}{31} \Delta \lambda\right]=\frac{20 \Delta \lambda}{31}
\end{aligned}
$$

And longest wavelength of Lyman series

$$
\begin{aligned}
& \frac{h c}{\lambda_{L}^{\prime}}=\Delta E_{0} Z^{2}\left(1-\frac{1}{4}\right)=\frac{3}{4} \Delta E_{0} Z^{2} \\
\Rightarrow & \lambda_{L}^{\prime}=\frac{4}{3}\left(\frac{h c}{\Delta E_{0} Z^{2}}\right)=\frac{4}{3} \cdot \frac{5}{31} \Delta \lambda \\
\Rightarrow & \lambda_{L}^{\prime}=\frac{20}{93} \Delta \lambda
\end{aligned}
$$

12. Answer (B, C)

Hint : $\Delta w=\frac{\lambda D}{d}$.

Solution :

Fringe width $\Delta w=\frac{\lambda D}{d}$
So if λ increases then fringe width also increases.
13. Answer (A, C, D)

Hint: $\lambda=\frac{h}{P}$

Solution :

$$
\begin{aligned}
& 2 m 6(\hat{i}+2 \hat{j})=P_{B} \\
\therefore \quad & \lambda=\frac{h}{12 m \sqrt{5}} \\
\Rightarrow & \frac{h}{m}=12 \sqrt{5} \lambda \\
& P_{A}=2 m(\hat{i}+2 \hat{j})=2 m \sqrt{5} \\
\therefore & \lambda_{A}=\frac{h}{2 \sqrt{5} m}=\frac{12 \sqrt{5} \lambda}{2 \sqrt{5}}=6 \lambda \\
& v_{0}=\frac{m(2 \hat{i}+4 \hat{j})+2 m(6 \hat{i}+12 \hat{j})}{3 m}=\frac{14 m \hat{i}+28 m \hat{j}}{3 m} \\
& P_{\mathrm{cm}}=3 m v_{0}=14 m(\hat{i}+2 \hat{j}) \\
\Rightarrow & \lambda_{\mathrm{cm}}=\frac{h}{P_{\mathrm{cm}}}=\frac{h}{14 \sqrt{5} m}=\frac{12 \sqrt{5} \lambda}{14 \sqrt{5}}=\frac{6}{7} \lambda
\end{aligned}
$$

$$
\text { Now, } \vec{v}_{A C}=\vec{v}_{A q r}-\vec{v}_{\text {car }}=2 \hat{i}+4 \hat{j}-\frac{14}{3} \hat{i}-\frac{28}{3} \hat{j}
$$

$$
\vec{v}_{A C}=\frac{-8}{3} \hat{i}-\frac{16}{3} \hat{j}=\frac{-8}{3}(\hat{i}+2 \hat{j})
$$

$$
\therefore\left|\vec{P}_{A C}\right|=\frac{8 m}{3} \sqrt{5}
$$

$$
\therefore \quad \vec{\lambda}_{A C}=\frac{h}{\left(P_{A C}\right)}=\frac{h \times 3}{8 \sqrt{5} m}=\frac{3}{8 \sqrt{5}} \times 12 \sqrt{5} \lambda
$$

$$
\vec{\lambda}_{A C}=\frac{9}{2} \lambda
$$

14. Answer (B, C, D)

Hint : Will be shifted upward by $\frac{d^{2}}{4 \lambda D}$

Solution :

$\Delta S_{3} S_{1} S_{2} \equiv \Delta P S_{2} S_{1}$
$\therefore \quad S_{0} S_{3}=O P$
\Rightarrow shifting $\Delta y=\frac{d}{4}$
\therefore Fringe width will remain same as $\frac{\lambda D}{d}$
$\therefore \quad$ Number of fringe crossing through O is

$$
N=\frac{d \cdot d}{4 \lambda D}=\frac{d^{2}}{4 \lambda D}
$$

15. Answer (A, B)

Hint :

$R_{n}=R_{0}\left(n^{2}\right)$
$\therefore \quad A_{n}=4 \pi R_{0}^{2} \cdot n^{4}$

Solution :

$$
\begin{aligned}
& R_{n}=R_{0} n^{2} \\
\therefore & A_{n}=4 \pi R_{0}^{2} \cdot n^{4}
\end{aligned}
$$

And $A_{1}=4 \pi R_{0}^{2}$
$\therefore \quad \frac{A_{n}}{A_{1}}=n^{4}$
$\Rightarrow \ln \left(\frac{A_{n}}{A_{1}}\right)=4 \ln n$
Straight line of slope 4 and pass through origin.
16. Answer (A, C)

Hint : Least count $=\left(\frac{1}{50}\right) \mathrm{mm}$.

Solution :

Least count $=\frac{1}{50} \mathrm{~mm}=0.02 \mathrm{~mm}$
Reading $=(1 \mathrm{~mm} \times 18)+0.02 \times 20$

$$
=18.4 \mathrm{~mm}
$$

17. Answer (A, C)

Hint: $\frac{h c}{\lambda}=\Delta E_{0}(Z-1)^{2} \cdot \frac{3}{4}$ (for K_{α} lines)

Solution :

$$
\begin{aligned}
& \frac{h c}{\lambda_{z}}=\Delta E_{0}(Z-1)^{2} \cdot \frac{3}{4} \\
& \frac{h c}{\lambda_{1}}=\Delta E_{0}\left(Z_{1}-1\right)^{2} \frac{3}{4} \\
& \frac{h c}{\lambda_{2}}=\Delta E_{0}\left(Z_{2}-1\right)^{2} \cdot \frac{3}{4} \\
& \therefore \quad \frac{\lambda_{z}}{\lambda_{1}}=4=\frac{\left(Z_{1}-1\right)^{2}}{(Z-1)^{2}} \\
& \Rightarrow \quad \frac{Z_{1}-1}{Z-1}=2 \\
& \therefore \quad Z_{1}=2 Z-1
\end{aligned}
$$

Similarly, $\frac{\lambda_{z}}{\lambda_{2}}=\frac{\left(Z_{2}-1\right)^{2}}{(Z-1)^{2}}=\frac{1}{4}$
$\Rightarrow \frac{Z_{2}-1}{Z-1}=\frac{1}{2}$
$\Rightarrow \quad Z_{2}=\frac{Z+1}{2}$
18. Answer (B, D)

Hint : $N=N_{0} e^{-\lambda t}$
Solution :
Let N_{0} be the number of active nuclei at $6: 10 \mathrm{AM}$ in 1 mL of dose.
Then at 8 : 00 AM, number of active nuclei becomes $\frac{N_{0}}{2}$ in 1 mL . So effectively $\frac{N_{0}}{2}$ no. of nuclei is to be administrated.
$\Rightarrow(1 \mathrm{~mL}) \cdot \frac{N_{0}}{2}=$ constant
At 7:05 AM let N_{1} be the active nuclei then

$$
N_{1}=\frac{N_{0}}{e^{\frac{\ln 2 \times 55}{110}}}=\frac{N_{0}}{\sqrt{2}}
$$

So $x \cdot \frac{N_{0}}{\sqrt{2}}=(1 \mathrm{~mL}) \frac{N_{0}}{2}$
$\Rightarrow \quad x=\left(\frac{1}{\sqrt{2}}\right) \mathrm{mL}$
At $9: 50 N_{3}=\frac{N_{0}}{4}$ And at $8: 55 \mathrm{AM} . N_{2}=\frac{N_{0}}{2 \sqrt{2}}$
$\therefore \frac{(1 \mathrm{~mL}) \frac{\mathrm{N}}{2}}{\text { At } 8: 00 \mathrm{AM}}=\frac{(\sqrt{2} \mathrm{~mL}) \frac{N_{0}}{2 \sqrt{2}}}{\text { At } 8: 55 \text { AM }}=\frac{(2 \mathrm{~mL})\left(\frac{N_{0}}{4}\right)}{\text { At } 9: 00 \text { AM }}$
19. Answer $A(Q) ; B(S) ; C(R, T) ; D(P)$

Hint : Apply Bohr's model.
Solution :
$\frac{m V^{2}}{r}=\frac{k Z e^{2}}{r^{2}}$
$m v r=\frac{n n}{2 \pi}$
$r_{n} \propto \frac{n^{2}}{Z}$
$V_{n} \propto \frac{Z}{n}$
$T=\frac{2 \pi r_{n}}{v_{n}}$
$T \propto \frac{n^{3}}{Z^{2}}$
$i=\frac{e}{T}=\frac{Z^{2}}{n^{3}}$
$B \propto \frac{i}{r}=\frac{z^{2} Z}{n^{3} n^{2}}=\frac{z^{3}}{n^{5}}$
20. Answer $A(Q) ; B(S) ; C(P, R) ; D(T)$

Hint : Fringe width $\Delta w=\frac{\lambda D}{d}$
Position of minima $(2 n+1) \frac{\lambda D}{2 d}$

Solution :

(A) If at S_{3} and S_{4} there is destructive interference then final intensity on second screen is zero
$\therefore \quad d_{1}=d_{2}=(2 n+1) \frac{\lambda D}{2 d}$
(B) If $d_{1}=\frac{3 \lambda D}{2 d}$ then destructive interference at S_{3} and if $d_{4}=\frac{\lambda D}{3 d}$ then resulting intensity at S_{4} is $\%$. So final intensity at screen 2 , is ℓ_{0}.
(C) If $d_{1}=d_{2}=\frac{\lambda D}{3 d}$ then resulting intensity at S_{3} and S_{4} are $\%_{0}$ and final intensity at screen 2 is 410 . Also if $d_{1}=\frac{\lambda D}{2 d}$ then intensity at S_{3} is zero and for $d_{2}=\frac{\lambda D}{d}$ the intensity at S_{4} is 4%. So final intensity at screen 2 is $4 / 0$.
(D) If constructive interference happens at S_{3} and S_{4} then find intensity at screen 2 is $16 / 0$.

PART - II (CHEMISTRY)

21. Answer (1)

Hint :

Solution :
$x=1$
Grignard reagent will not interact with product.
22. Answer (5)

Hint :

Solution :
A and B are non-aromatic compounds
Statements P, Q, R, U and V are incorrect.
23. Answer (8)

Hint :

(Berzoin condensation)

Solution :

Difference in molar mass, $M=64 ; \frac{M}{8}=8$
24. Answer (3)

Hint : Isoelectric point is the pH when an amino acid exist in zwitterionic form and shows no net migration towards any electrode.

Solution :

$$
\begin{aligned}
\mathrm{pl} & =\frac{\mathrm{pK}_{\mathrm{a}_{1}}+\mathrm{pK}_{\mathrm{a}_{2}}}{2} \\
& =\frac{2+4}{2}=3
\end{aligned}
$$

25. Answer (4)

Hint :

Solution :
Q is

Each - CHO can produce an oxime.
26. Answer (3)

Hint :

Solution :

$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NOH} \xrightarrow{\Delta}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}+\mathrm{C}_{2} \mathrm{H}_{4}$
$\left.>\mathrm{N}-\mathrm{H} \xrightarrow{\mathrm{HNO}_{3}}\right\rangle \mathrm{N} \rightarrow \mathrm{NO}$
Reactions A, D and E are correct.
27. Answer (5)

Hint :

(Z)

Solution :

$x^{\prime}=1$
$z^{\prime}=2$
$\mathrm{n}=2$
Nucleophilic substitution takes place via Sn2
28. Answer (6)

Hint :

Solution :

$\mathrm{R}-\mathrm{NO}_{2} \xrightarrow{+6 \mathrm{e}^{-}} \mathrm{R}-\mathrm{NH}_{2}$
29. Answer (A, B)

Hint : Ethers have lower boiling point than alcohols as there is hydrogen bonding involved in between two alcohol molecule.

Solution :

Compounds with multiple hydroxy functional group are having greater boiling point than mono hydroxy compound.
30. Answer (A, B)

Hint : PCl_{5} cause substitution of -OH by -Cl group.

Solution :

31. Answer (A, B, D)

Hint :

Solution :

Ether do not undergo oxidation and in alkaline medium there is no hydrolysis that can occur on ether linkage.
32. Answer (B, D)

Hint :

Hemiacetal forms are
 are reducing in nature.

Solution :
Both C_{1} and C_{2} are having hemiacetal that's why both are reducing.
33. Answer (C)

Hint :

Polymer will yield upon ozonolysis

Solution :

Monomer of the polymer is

34. Answer (A, C)

Hint : Histamine is not an antacid. It stimulates the secretion of acid in stomach.

Solution :

Brompheniramine is an antihistaminics
35. Answer (A, B, C, D)

Hint : During Hoffman bromamide degradation stereochemistry of migrating group does not change.
Solution :
P is

Q is

36. Answer (C)

Hint :
All given species can give yellow opt with 2, 4-DNP.

Solution :

Only can give yellow pt with I_{2} in NaOH .
37. Answer (C, D)

Hint : Correct order for basic strength is $\mathrm{C}>\mathrm{A}>$ D > B

Solution :

More is the availability of lone pair of e^{-}on N -atom, greater would be the basic strength.
38. Answer (A, B, C)

Hint : The amines which can show optical activity, are resolvable.

Solution :
Amines which are bonded with four bulky groups and cyclic amines cannot undergo inversion.
39. Answer $A(P, R) ; B(Q) ; C(Q, S, T) ; D(Q)$

Hint : Gauche and anti-form are diastereomers of each other.

Solution :

Pure enantiomer
Pure enantiomer

Mixture of E and Z isomer

40. Answer $A(P, Q, S) ; B(P, R) ; C(P, R, T) ; D(R)$

Hint: Cellulose has β-links
Starch has α-links

Solution :

Sucrose upon hydrolysis gives α-D-glucose and β-D-fructose.
Maltose gives only α-D-glucose.

PART - III (MATHEMATICS)

41. Answer (4)

Hint : Fundamental principle of counting.
Solution :Total combinations of a, b, c and $d=6^{4}$ $(a-3),(b-4),(c-5)$ and $(d-6)$ are integers.
Their product is 1 then
(i) All of them should be 1 (Not possible as $d \neq 7$)
(ii) All of them should be -1 (one case $a=2, b=3$, $c=4, d=5$)
(iii) Two of them are 1 and remaining two are -1 (three cases)
Total favourable cases $=4$
Required probability $=\frac{4}{6^{4}}$
42. Answer (5)

Hint :Slope of normal is 2.
Solution : $x y^{2}=8$
$\Rightarrow \frac{d y}{d x_{(2,2)}}=-\frac{1}{2}$
Slope of normal $=2$
So, unit vector along normal $=\frac{i+2 j}{\sqrt{5}}=\vec{x}$
Length of projection $=\left|\frac{3-8}{\sqrt{5}}\right|=\sqrt{5}$
43. Answer (2)

Hint: One angle of rhombus is $\frac{\pi}{3}$
Solution :Angle between two given lines;
$\cos \theta=\frac{1}{\sqrt{2} \cdot \sqrt{2}}=\frac{1}{2}$
$\theta=\frac{\pi}{3}$
Area of rhombus $=2 \sqrt{3}$

$\frac{1}{2}\left(2 I_{1}\right)\left(2 I_{2}\right)=2 \sqrt{3}$
$I_{1} I_{2}=\sqrt{3}$
Also, $\frac{I_{2}}{l_{1}}=\frac{1}{\sqrt{3}}$
So $I_{1}=\sqrt{3}$ and $I_{2}=1$
Side length of rhombus $=\sqrt{l_{1}^{2}+I_{2}^{2}}=2$
44. Answer (5)

Hint: Both the lines are parallel
Solution: $2 x-2 y+z-9=0=x+2 y+2 z+12$ is line of intersection of planes $P_{1}: 2 x-2 y+z$
$-9=0$ and $P_{2}: x+2 y+2 z+12=0$.
Another line $L: \frac{x}{2}=\frac{y}{1}=\frac{z}{-2}$ is parallel to both planes P_{1} and P_{2}.

Distance between L and $P_{1}=\left|\frac{9}{\sqrt{4+4+1}}\right|=3$
and distance between L and $P_{2}=\left|\frac{12}{\sqrt{4+4+1}}\right|=4$
then distance between the two lines
$=\sqrt{3^{2}+4^{2}}=5$
45. Answer (6)

Hint : $P(A \cap B)=P(A) \cdot P(B)$
Solution : $P(A \cap B)=P(A) \cdot P(B)$
$\Rightarrow P(A)=\frac{1}{5}$
Now, $P\left(\frac{\bar{A}}{A \cup B}\right)=\frac{P(\bar{A} \cap(A \cup B))}{P(A \cup B)}$
$\Rightarrow P\left(\frac{\bar{A}}{A \cup B}\right)=\frac{P(B)-P(A \cap B)}{\frac{1}{5}+\frac{1}{2}-\frac{1}{10}}=\frac{\frac{1}{2}-\frac{1}{10}}{\frac{6}{10}}=\frac{2}{3}$
So, $9 P\left(\frac{\bar{A}}{A \cup B}\right)=6$
46. Answer (7)

Hint : Count cases when number of letters between A and E are 0,1 or 2

Solution :Total words = |8
There are 6 cases when number of letters between A and E (or A and I) is zero.
There are 4 cases when number of letters between A and E (or A and I) is one.

There are 2 cases when number of letters between A and E (or A and I) is two.

So, favourable words $=(\lfloor 2 \times \underline{5})$
Required probability $=\frac{12 \underline{2} \underline{5}}{\boxed{8}}$
$\Rightarrow \quad P=\frac{1}{14}$
$\Rightarrow \frac{1}{2 P}=7$
47. Answer (9)

Hint : Use formula for division into groups.

Solution : Total number of ways of forming groups $=\frac{\boxed{8}}{\left(\lfloor 2)^{4} \cdot\lfloor 4\right.} \cdot \frac{\boxed{4}}{\left(\lfloor 2)^{2} \cdot \underline{2}\right.}$. If $5^{\text {th }}$ ranked player is in the final, then he played a match against a higher ranked player in second round.

So in first round $5^{\text {th }}$ ranked player played a match against $6^{\text {th }}, 7^{\text {th }}$ or $8^{\text {th }}$ ranked player and remaining two of these played against each other.

Number of favourable ways for round one

$$
={ }^{3} C_{1} \cdot 1 \cdot \frac{\boxed{4}}{(\underline{2})^{2}\lfloor }
$$

And number of favourable ways for round two $=1$

$$
\begin{aligned}
\text { Required probability } & =\frac{{ }^{3} C_{1} \cdot \frac{\boxed{4}}{\left(\lfloor 2)^{2}\lfloor 2\right.} \times 1}{\frac{\boxed{8}}{\left(\lfloor 2)^{4}\lfloor 4\right.} \cdot \frac{\boxed{4}}{\left(\lfloor 2)^{2}\lfloor 2\right.}} \\
& =\frac{1}{35}
\end{aligned}
$$

Number of divisors of 36 will be 9 .
48. Answer (4)

Hint : Angle between two lines $=\frac{\bar{b}_{1} \cdot \bar{b}_{2}}{\left|\bar{b}_{1}\right|\left|\bar{b}_{2}\right|}$
(where b_{1} and b_{2} are the vectors along the lines)

Solution :

$$
\begin{aligned}
& \cos \alpha=\frac{a(\sin \theta-2)+b \sqrt{5} \cos \theta+(2 \sin \theta+1)}{\sqrt{(\sin \theta-2)^{2}+5 \cos ^{2} \theta+(2 \sin \theta+1)^{2}} \sqrt{a^{2}+b^{2}+1^{2}}} \\
& \Rightarrow \cos \alpha=\frac{\sin \theta(a+2)+b \sqrt{5} \cos \theta-2 a+1}{\sqrt{10} \sqrt{a^{2}+b^{2}+1}}
\end{aligned}
$$

$\because \alpha$ is independent of θ, then $a+2=0$ and $b=0$

$$
\begin{aligned}
& \Rightarrow \cos \alpha=\frac{5}{\sqrt{10} \sqrt{5}}=\frac{1}{\sqrt{2}} \\
& \Rightarrow \alpha=\frac{\pi}{4}
\end{aligned}
$$

49. Answer (B, C)

Hint : If odds in favour of an event is p then its probability is $\frac{p}{1+p}$

Solution : Let odds in favour of an event is p
then its probability is $\frac{p}{1+p}$
$p=3 q$
Probability of $1^{\text {st }}$ event $=\frac{p}{1+p}$
Probability $2^{\text {nd }}$ event $=\frac{q}{1+q}$
$\frac{p}{1+p}=2\left(\frac{q}{1+q}\right)$
From (i) and (ii) $p=0$ or 1
Probability of $1^{\text {st }}$ event $=0$ or $\frac{1}{2}$
50. Answer (A, B, D)

Hint : Use binomial distribution
Solution: Probability of A winning the game
$={ }^{3} C_{2} \cdot p^{2}(1-p)+{ }^{3} C_{3} p^{3}$
$=p^{2}[3-2 p]$
Probability of B winning the game
$={ }^{5} C_{3} p^{3}(1-p)^{2}+{ }^{5} C_{4} p^{4}(1-p)+{ }_{5} C_{5} p^{5}$
$=p^{3}\left[6 p^{2}-15 p+10\right]$
Now, $p^{2}(3-2 p)=p^{3}\left(6 p^{2}-15 p+10\right)$
$\Rightarrow p=0,1, \frac{1}{2}$
51. Answer (A, B, C)

Hint: $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{b} \cdot \vec{c})-(\vec{a} \cdot \vec{b}) \vec{c}$
Solution: $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \times \vec{c}$
$\Rightarrow(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{c}) \vec{a}$
$\Rightarrow(\vec{a} \cdot b) \vec{c}=(\vec{b} \cdot \vec{c}) \vec{a}$
So either \vec{a} and \vec{c} are collinear or

$$
\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=0
$$

which means either \vec{b} is a null vector or \vec{b} is perpendicular to both \vec{a} and \vec{c}.
52. Answer (A, C, D)

Hint : $|\lambda \vec{a}+\mu \vec{b}|^{2}=4 \lambda^{2}+\mu^{2}+2 \lambda \mu$
Solution : $|\lambda \vec{a}+\mu \vec{b}|^{2}=\lambda^{2}|\vec{a}|^{2}+\mu^{2}|\vec{b}|^{2}+2 \lambda \mu \vec{a} \cdot \vec{b}$
$=4 \lambda^{2}+\mu^{2}+2 \lambda \mu$
(A) $|\vec{a}-\vec{b}|^{2}=4+1-2=3 \Rightarrow|\vec{a}-\vec{b}|=\sqrt{3}$
(B) $\left|\vec{b}-\frac{1}{2} \vec{a}\right|^{2}=1+1-1=1 \Rightarrow\left|\vec{b}-\frac{1}{2} \vec{a}\right|=1$
(C) $\left|\frac{3 \vec{a}-7 \vec{b}}{2}\right|^{2}=\frac{36+49-42}{4}=\frac{43}{4}$

$$
\Rightarrow|3 \vec{a}-7 \vec{b}|=\sqrt{\frac{43}{2}}
$$

(D) $|2 \vec{a}-5 \vec{b}|^{2}=16+25-20=21$

$$
|2 \vec{a}-5 \vec{b}|=\sqrt{21}
$$

53. Answer (B, C, D)

Hint : Equation must be inconsistent and planes should be non parallel.

Solution :

$\left|\begin{array}{ccc}1 & k & 1 \\ 1 & 1 & k \\ 1 & -3 & 3\end{array}\right|=0$
$\Rightarrow k=1,-1$
But $k \neq 1$ (The two planes will be parallel so triangular prism can't be formed).
54. Answer (B, C, D)

Hint : Assume points $B(\vec{b})$ and $D(\vec{d})$ then use scalar product.
Solution : Consider A as origin and position vectors of B, D and C as $\vec{b}, \vec{d}, \vec{b}+\vec{d}$ respectively.

$$
\text { Here }|\vec{b}|=x \text { and }|\vec{d}|=y
$$

$$
\text { Also }|\vec{b}+\vec{d}|=z
$$

$$
\begin{equation*}
\Rightarrow x^{2}+y^{2}+2 \vec{b} \cdot \vec{d}=z^{2} \tag{i}
\end{equation*}
$$

$$
\overrightarrow{B D} \cdot \overrightarrow{D A}=(\vec{d}-\vec{b}) \cdot(-\vec{d})
$$

$$
=-y^{2}+\vec{b} \cdot \vec{d}
$$

$$
=-y^{2}+\frac{z^{2}-x^{2}-y^{2}}{2}(\text { from }(\mathrm{i}))
$$

$$
=-\frac{1}{2} x^{2}-\frac{3}{2} y^{2}+\frac{1}{2} z^{2}
$$

55. Answer (B, C, D)

Hint : Consider $\vec{c}=\lambda \vec{a}+\mu \vec{b}$

Solution :

$\because \vec{a}, \vec{b}, \vec{c}$ are coplanar then

Let $\vec{c}=\lambda \vec{a}+\mu \vec{b}$
$\vec{a} \cdot \vec{c}=\lambda \vec{a} \cdot \vec{a}+\mu \vec{a} \cdot \vec{b}$
$-\frac{1}{2}=\lambda+\mu \cos \theta$
Similarly $\vec{b} \cdot \vec{c}=\lambda \vec{a} \cdot \vec{b}+\mu \vec{b} \cdot \vec{b}$
$\cos \left(\frac{2 \pi}{3}-\theta\right)=\lambda \cos \theta+\mu$
From (i) and (ii)
$\lambda=-\frac{\sqrt{3}}{2} \cot \theta-\frac{1}{2}$ and $\mu=\frac{\sqrt{3}}{2} \operatorname{cosec} \theta$
So, $\bar{c}=-\left(\frac{\sqrt{3} \cot \theta+1}{2}\right) \bar{a}+\left(\frac{\sqrt{3}}{2} \operatorname{cosec} \theta\right) \bar{b}$
56. Answer (A, C, D)

Hint : Use Bayes theorem
Solution :Let events
$E_{1}=$ Coins show 2 heads (die X is rolled)
$E_{2}=$ Coins show 1 head (die Y is rolled)
$E_{3}=$ Coins show no head (die Z is rolled)
And $A=$ Die shows red face.

$$
\begin{gathered}
P\left(E_{1}\right)=\frac{1}{4} \quad P\left(E_{2}\right)=\frac{2}{4} \quad P\left(E_{3}\right)=\frac{1}{4} \\
P\left(\frac{A}{E_{1}}\right)=\frac{1}{6} \quad P\left(\frac{A}{E_{2}}\right)=\frac{3}{6} \quad P\left(\frac{A}{E_{3}}\right)=\frac{2}{6} \\
P\left(\frac{E_{3}}{A}\right)=\frac{P\left(E_{3}\right) \cdot P\left(\frac{A}{E_{3}}\right)}{P\left(E_{1}\right) \cdot P\left(\frac{A}{E_{1}}\right)+P\left(E_{2}\right) \cdot P\left(\frac{A}{E_{2}}\right)+P\left(E_{3}\right) \cdot P\left(\frac{A}{E_{3}}\right)} \\
=\frac{\frac{1}{4} \cdot \frac{2}{6}}{\frac{1}{4} \cdot \frac{1}{6}+\frac{2}{4} \cdot \frac{3}{6}+\frac{1}{4} \cdot \frac{2}{6}} \\
= \\
\frac{2}{1+6+2}=\frac{2}{9}
\end{gathered}
$$

57. Answer (B, D)

Hint : $\because \frac{A D}{C D}=\frac{A B}{B C}$

Solution :

$\because \frac{A D}{C D}=\frac{A B}{B C}=\frac{3}{7}$
Using section formula;
$D\left(0,-\frac{1}{2}, \frac{1}{2}\right)$
(A) DR's of $B D \propto 2,-\frac{1}{2}, \frac{5}{2}$ or $4,-1,5$
(B) $B D=\sqrt{4+\frac{1}{4}+\frac{25}{4}}=\sqrt{\frac{21}{2}}$
(C) Area of

$$
\begin{aligned}
\Delta A B D & =\frac{1}{2}|\overrightarrow{B A} \times \overrightarrow{B D}|=\frac{1}{2}\left|-\frac{9}{2} \hat{i}-3 \hat{j}+3 \hat{k}\right| \\
& =\frac{\sqrt{153}}{4}
\end{aligned}
$$

(D) Area of

$$
\begin{aligned}
\triangle A B C & =\frac{1}{2}|B \dot{A} \times B \dot{C}|=\frac{1}{2}|-15 \hat{i}-10 \hat{j}+10 \hat{k}| \\
& =\frac{5 \sqrt{17}}{2}
\end{aligned}
$$

58. Answer (A, C)

Hint : Probability of a selected number to be even is $\frac{3}{7}$ and to be odd is $\frac{4}{7}$

Solution: $(A$ and $B) a b c$ is even if at least one of a, b or c is even, so

Required probability $=1-\left(\frac{4}{7}\right)^{3}$

$$
=\frac{279}{7^{3}}
$$

(C) $(a b+c)$ is even then,

Case (1): If c is even then at least one of a or b is even.

Case (2): If c is odd then both a and b are odd Required probability
$=\frac{3}{7}\left(1-\left(\frac{4}{7}\right)^{2}\right)+\left(\frac{4}{7}\right)^{3}=\frac{163}{7^{3}}$
(B) $(a+b+c)$ is even if all are even or anyone is even and remaining two are odd.
Required probability $=\left(\frac{3}{7}\right)^{3}+{ }^{3} C_{1} \cdot \frac{3}{7}\left(\frac{4}{7}\right)^{2}=\frac{171}{7^{3}}$
59. Answer $A(T) ; B(Q) ; C(P, R) ; D(S)$

Hint : Three faces of a triangular prism are parallelogram.
Solution :
(A) Let point $B^{\prime}(x, y, z)$
$\because A A^{\prime} B^{\prime} B$ is a parallelogram

So, $x_{1}+0=2-1 \Rightarrow x_{1}=1$
$y_{1}+0=1+1 \Rightarrow y_{1}=2$
$z_{1}+0=2+3 \Rightarrow z_{1}=5$
$B^{\prime}(1,2,5)$
(B) Similarly $C^{\prime}(2,4,4)$
(C) Point of intersection of diagonals of face
$A A^{\prime} B^{\prime} B$ is $\left(\frac{1}{2}, 1, \frac{5}{2}\right)$
Point of intersection of diagonals of face
$A A^{\prime} C^{\prime} C$ is $(1,2,2)$
Point of intersection of diagonals of face
$B B^{\prime} C^{\prime} C$ is $\left(\frac{1}{2}, \frac{5}{2}, 3\right)$
(D) D^{\prime} is midpoint of B^{\prime} and C^{\prime}, so
$D^{\prime}\left(\frac{3}{2}, 3, \frac{9}{2}\right)$
60. Answer $A(S, T) ; B(P, S) ; C(T) ; D(R, T)$

Hint : $p(E)=\frac{n(E)}{n(S)}$

Solution :

Total number in set $S=5 \times 5 \times 4 \times 3=300$
(A) If number is divisible by 4 , the last two digits will be $04,12,20,24,32,40$, or 52 .
Total number of numbers $=12 \times 3+9 \times 4=72$
Required probability $=\frac{72}{300}=\frac{6}{25}$
(B) There should be either only one odd digit or only even digit in the number.

Total such numbers $={ }^{3} C_{1} \cdot 3\left|\underline{3}+{ }^{2} C_{1} \cdot 4+3\right| \underline{3}$

$$
\begin{aligned}
& =54+48+18 \\
& =120
\end{aligned}
$$

Required probability $=\frac{120}{300}=\frac{2}{5}$
(C) There are only 5 combinations of 4 digits possible (1, 2, 4, 5); (0, 3, 4, 5); (0, 2, 3, 4); $(0,1,3,5)$ or $(0,1,2,3)$

Number of numbers divisible by 6 using
$(1,2,4,5)=12$
Number of numbers divisible by 6 using $(0,3,4,5)=10$
Number of numbers divisible by 6 using $(0,2,3,4)=14$

Number of numbers divisible by 6 using $(0,1,3,5)=6$
Number of numbers divisible by 6 using $(0,1,2,3)=10$
Total numbers divisible by $6=52$
Required probability $=\frac{52}{300}=\frac{13}{75}$
(D) If $a b c d$ is divisible by 11 then
$a+c=b+d$
Total number of numbers divisible by
$11=48$
Required probability $=\frac{48}{300}=\frac{4}{25}$

All India Aakash Test Series for JEE (Advanced)-2020

TEST - 4A (Paper-1) - Code-B

Test Date : 24/11/2019

ANSWERS

PHYSICS

1. (5)
2. (4)
3. (2)
4. (6)
(2)
(3)
(7)

CHEMISTRY
21. (6)
22. (5)
23. (3)
24. (4)
25. (3)
26. (8)
27. (5)
28. (1)
29. (A, B, C)
30. (C, D)
31. (C)
32. (A, B, C, D)
33. (A, C)
34. (C)
35. (B, D)
36. (A, B, D)
37. (A, B)
38. (A, B)
39. $A \rightarrow(P, Q, S)$
$B \rightarrow(P, R)$
$\mathrm{C} \rightarrow(\mathrm{P}, \mathrm{R}, \mathrm{T})$
$\mathrm{D} \rightarrow(\mathrm{R})$
40. $\quad A \rightarrow(P, R)$
$B \rightarrow(Q)$
$\mathrm{C} \rightarrow(\mathrm{Q}, \mathrm{S}, \mathrm{T})$
$D \rightarrow(Q)$

MATHEMATICS

41. (4)
42. (9)
43. (7)
44. (6)
45. (5)
46. (2)
47. (5)
48. (4)
49. (A, C)
50. (B, D)
51. (A, C, D)
52. (B, C, D)
53. (B, C, D)
54. (B, C, D)
55. (A, C, D)
56. (A, B, C)
57. (A, B, D)
58. (B, C)
59. $A \rightarrow(S, T)$
$B \rightarrow(P, S)$
$\mathrm{C} \rightarrow(\mathrm{T})$
$D \rightarrow(R, T)$
60. $\mathrm{A} \rightarrow(\mathrm{T})$
$B \rightarrow(Q)$
$C \rightarrow(P, R)$
$\mathrm{D} \rightarrow(\mathrm{S})$

HINTS \& SOLUTHONS

PART - I (PHYSICS)

1. Answer (5)

Hint :

Minima will be at the position where path differences are $4.5 \lambda, 3.5 \lambda, 2.5 \lambda, 1.5 \lambda, 0.5 \lambda$.

Solution :

Minima will be at those points where path differences are $4.5 \lambda, 3.5 \lambda, 2.5 \lambda, 1.5 \lambda$ and 0.5λ
So five minima are observed.
2. Answer (4)

Hint : $\Delta E($ for reaction $)=4(7.30 \mathrm{MeV})-3(2.40 \mathrm{MeV})$

$$
-2(1.00 \mathrm{MeV})
$$

Solution :

$\Delta E($ for reaction $)=[4(7.30)-3(2.40)-2(1.0)] \mathrm{MeV}$
$\Rightarrow \Delta E=20 \mathrm{MeV}$
$\Rightarrow \quad \frac{1}{5}$ th of this energy will be taken away by helium and rest are for neutron.
3. Answer (2)

Hint : $\left.d \sin \theta=\frac{\lambda}{2} \quad \right\rvert\,$ for $1^{\text {st }}$ minima $\theta=0.75^{\circ} \mid$

Solution :

For first minima $\theta=0.75^{\circ}$
$\therefore \quad d=\frac{\lambda}{2 \sin \left(0.75^{\circ}\right)}=1.98 \times 10^{-5} \mathrm{~m}$
$\Rightarrow d \approx 2 \times 10^{-2} \mathrm{~mm}$
4. Answer (6)

Hint : $\Delta E_{0}\left|1-\frac{1}{n^{2}}\right|=\Delta E$

Solution :

$\Delta E=30 \mathrm{eV}$
42.5% of $30 \mathrm{eV}=12.75 \mathrm{eV}$
$13.6\left|1-\frac{1}{n^{2}}\right|=12.75$
So we get $n=4$ (is the energy level to which hydrogen gets excited)
So, number of wavelengths $=6$
5. Answer (2)

Hint : $d \sin \theta=(2 \mu t+t)-2 \mu t$

Solution :

$$
\begin{aligned}
& d \sin \theta=(2 \mu t+t)-2 \mu t \\
\Rightarrow \quad & d \frac{y}{D}=t \Rightarrow \quad y=\frac{D t}{d}
\end{aligned}
$$

$\Rightarrow \quad y=\frac{1 \times 2 \times 10^{-5}}{1 \times 10^{-3}}=2 \times 10^{-2} \mathrm{~m}$
6. Answer (3)

Hint : $m v_{0}=2 m v \cos 30^{\circ} ; \frac{1}{2} m v_{0}^{2}=x\left[\frac{3}{4} \Delta E_{0}\right]$

Solution :

Let the final speed of (both) the H -atom and neutron is v then, $m v_{0}=2 m v \cos 30^{\circ}$
$\Rightarrow \quad v=\frac{v_{0}}{\sqrt{3}}$
Also, $\frac{1}{2} m v_{0}^{2}=\frac{1}{2} \cdot 2 m \cdot \frac{v_{0}^{2}}{3}+\frac{3}{4} \Delta E_{0}$
$\therefore \quad \frac{1}{2} m v_{0}^{2}\left(1-\frac{2}{3}\right)=\frac{3}{4} \Delta E_{0}$
$\Rightarrow \quad \frac{1}{2} m v_{0}^{2}=\frac{9}{4} \Delta E_{0}$
$\because \quad \frac{1}{2} m v_{0}^{2}=x\left(\frac{3}{4} \Delta E_{0}\right)$
$\therefore \quad x\left[\frac{3}{4} \Delta E_{0}\right]=\frac{9}{4} \Delta E_{0}$
$\therefore \quad x=3$
7. Answer (7)

Hint : $A_{R}^{2}=A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \phi$

Solution :

Let the amplitude of wave through
S_{1} and S_{2} be A. So, if $A^{2}=I_{0}$
Then $4 A^{2}=I \Rightarrow A^{2}=\frac{I}{4}$
After passing through P_{1} amplitude would be A and after passing through P_{2} amplitude would be $\frac{A}{2}$

$$
\begin{aligned}
& \Delta x=\left(\mu_{1} t-\mu_{2} t\right)=0.5 \times 40 \times 10^{-6} \\
\therefore \quad \Delta \phi & =\frac{1}{2} \times 40 \times 10^{-6} \times \frac{2 \pi}{4000} \times 10^{10}=50 \times 2 \pi
\end{aligned}
$$

So, construction interference would occur at O
$\therefore \quad A_{\text {result }}=A+\frac{A}{2}=\frac{3 A}{2}$
and $I^{\prime}=\frac{9}{4} A^{2}=\frac{9}{4} \cdot \frac{I}{4}=\left(\frac{9}{16}\right) I$
$\therefore \quad x=9, y=16$
$\Rightarrow y-x=7$
8. Answer (2)

Hint : $\frac{h c}{X_{\text {min }}}=\Delta E-\phi$

Solution :

$$
\begin{align*}
& \frac{\lambda_{\mathrm{H}_{2}}}{\lambda_{\text {gas }}}=\frac{\sqrt{2 m\left(\frac{3}{4} z^{2} \Delta E_{0}-\phi\right)}}{\sqrt{2 m\left(\frac{3}{4} \Delta E_{0}-\phi\right)}} \\
\Rightarrow & \frac{\frac{3}{4} \Delta E_{0} z^{2}-\phi}{\frac{3}{4} \Delta E_{0}-\phi}=\frac{61}{10} \tag{i}
\end{align*} .
$$

Also, $\frac{3}{4} \Delta E_{0} z^{2}-\frac{\Delta E_{0} z^{2}}{4}=2 \Delta E_{0}$
$\Rightarrow \frac{\Delta E_{0} z^{2}}{2}=2 \Delta E_{0} \quad \therefore z=2$
Now in equation (i)

$$
\begin{aligned}
& 10\left(3 \Delta E_{0}-\phi\right)=61\left(\frac{3}{4} \Delta E_{0}-\phi\right) \\
\Rightarrow & 30 \Delta E_{0}-10 \phi=\frac{183}{4} \Delta E_{0}-61 \phi \\
\Rightarrow & 51 \phi=\frac{63}{4} \Delta E_{0} \\
\Rightarrow & \phi=\frac{63 \times 13.6}{4 \times 51} \mathrm{eV}=\frac{21 \times 2}{10} \mathrm{eV} \\
\therefore & K=2
\end{aligned}
$$

9. Answer (B, D)

Hint : $N=N_{0} e^{-\lambda t}$

Solution :

Let N_{0} be the number of active nuclei at $6: 10 \mathrm{AM}$ in 1 mL of dose.
Then at 8 : 00 AM , number of active nuclei becomes $\frac{N_{0}}{2}$ in 1 mL . So effectively $\frac{N_{0}}{2}$ no. of nuclei is to be administrated.
$\Rightarrow(1 \mathrm{~mL}) \cdot \frac{N_{0}}{2}=$ constant
At 7:05 AM let N_{1} be the active nuclei then

$$
N_{1}=\frac{N_{0}}{e^{\frac{\ln 2 \times 55}{110}}}=\frac{N_{0}}{\sqrt{2}}
$$

So $\quad x \cdot \frac{N_{0}}{\sqrt{2}}=(1 \mathrm{~mL}) \frac{N_{0}}{2}$
$\Rightarrow \quad x=\left(\frac{1}{\sqrt{2}}\right) \mathrm{mL}$
At $9: 50 N_{3}=\frac{N_{0}}{4}$ And at $8: 55 \mathrm{AM} . N_{2}=\frac{N_{0}}{2 \sqrt{2}}$
$\therefore \frac{(1 \mathrm{~mL}) \frac{\mathrm{N}}{2}}{\text { At } 8: 00 \mathrm{AM}}=\frac{(\sqrt{2} \mathrm{~mL}) \frac{N_{0}}{2 \sqrt{2}}}{\text { At } 8: 55 \text { AM }}=\frac{(2 \mathrm{~mL})\left(\frac{N_{0}}{4}\right)}{\text { At 9:00 AM }}$
10. Answer (A, C)

Hint: $\frac{h c}{\lambda}=\Delta E_{0}(Z-1)^{2} \cdot \frac{3}{4}$ (for K_{α} lines)

Solution :

$$
\begin{aligned}
& \frac{h c}{\lambda_{z}}=\Delta E_{0}(Z-1)^{2} \cdot \frac{3}{4} \\
& \frac{h c}{\lambda_{1}}=\Delta E_{0}\left(Z_{1}-1\right)^{2} \frac{3}{4} \\
& \frac{h c}{\lambda_{2}}=\Delta E_{0}\left(Z_{2}-1\right)^{2} \cdot \frac{3}{4} \\
& \therefore \quad \frac{\lambda_{z}}{\lambda_{1}}=4=\frac{\left(Z_{1}-1\right)^{2}}{(Z-1)^{2}} \\
& \Rightarrow \quad \frac{Z_{1}-1}{Z-1}=2 \\
& \therefore \quad Z_{1}=2 Z-1
\end{aligned}
$$

$$
\text { Similarly, } \frac{\lambda_{z}}{\lambda_{2}}=\frac{\left(Z_{2}-1\right)^{2}}{(Z-1)^{2}}=\frac{1}{4}
$$

$$
\Rightarrow \frac{Z_{2}-1}{Z-1}=\frac{1}{2}
$$

$$
\Rightarrow \quad Z_{2}=\frac{Z+1}{2}
$$

11. Answer (A, C)

Hint : Least count $=\left(\frac{1}{50}\right) \mathrm{mm}$.

Solution :

Least count $=\frac{1}{50} \mathrm{~mm}=0.02 \mathrm{~mm}$
Reading $=(1 \mathrm{~mm} \times 18)+0.02 \times 20$

$$
=18.4 \mathrm{~mm}
$$

12. Answer (A, B)

Hint :

$$
\begin{aligned}
& R_{n}=R_{0}\left(n^{2}\right) \\
\therefore & A_{n}=4 \pi R_{0}^{2} \cdot n^{4}
\end{aligned}
$$

Solution :

$$
\begin{aligned}
& R_{n}=R_{0} n^{2} \\
\therefore & A_{n}=4 \pi R_{0}^{2} \cdot n^{4}
\end{aligned}
$$

And $A_{1}=4 \pi R_{0}^{2}$
$\therefore \quad \frac{A_{n}}{A_{1}}=n^{4}$
$\Rightarrow \ln \left(\frac{A_{n}}{A_{1}}\right)=4 \ln n$
Straight line of slope 4 and pass through origin.
13. Answer (B, C, D)

Hint : Will be shifted upward by $\frac{d^{2}}{4 \lambda D}$
Solution :

$\Delta S_{3} S_{1} S_{2} \equiv \Delta P S_{2} S_{1}$
$\therefore \quad S_{0} S_{3}=O P$
\Rightarrow shifting $\Delta y=\frac{d}{4}$
\therefore Fringe width will remain same as $\frac{\lambda D}{d}$
$\therefore \quad$ Number of fringe crossing through O is

$$
N=\frac{d \cdot d}{4 \lambda D}=\frac{d^{2}}{4 \lambda D}
$$

14. Answer (A, C, D)

Hint: $\lambda=\frac{h}{P}$

Solution :

$$
\begin{aligned}
& 2 m 6(\hat{i}+2 \hat{j})=P_{B} \\
\therefore & \lambda=\frac{h}{12 m \sqrt{5}} \\
\Rightarrow & \frac{h}{m}=12 \sqrt{5} \lambda \\
& P_{A}=2 m(\hat{i}+2 \hat{j})=2 m \sqrt{5} \\
\therefore & \lambda_{A}=\frac{h}{2 \sqrt{5} m}=\frac{12 \sqrt{5} \lambda}{2 \sqrt{5}}=6 \lambda \\
& v_{0}=\frac{m(2 \hat{i}+4 \hat{j})+2 m(6 \hat{i}+12 \hat{j})}{3 m}=\frac{14 m \hat{i}+28 m \hat{j}}{3 m} \\
& P_{\mathrm{cm}}=3 m v_{0}=14 m(\hat{i}+2 \hat{j}) \\
\Rightarrow & \lambda_{\mathrm{cm}}=\frac{h}{P_{\mathrm{cm}}}=\frac{h}{14 \sqrt{5} m}=\frac{12 \sqrt{5} \lambda}{14 \sqrt{5}}=\frac{6}{7} \lambda
\end{aligned}
$$

$$
\text { Now, } \vec{v}_{A C}=\vec{v}_{A q r}-\vec{v}_{\text {cqr }}=2 \hat{i}+4 \hat{j}-\frac{14}{3} \hat{i}-\frac{28}{3} \hat{j}
$$

$$
\begin{aligned}
& \vec{v}_{A C}=\frac{-8}{3} \hat{i}-\frac{16}{3} \hat{j}=\frac{-8}{3}(\hat{i}+2 \hat{j}) \\
\therefore & \left|\vec{P}_{A C}\right|=\frac{8 m}{3} \sqrt{5}
\end{aligned}
$$

$\therefore \quad \vec{\lambda}_{A C}=\frac{h}{\left(P_{A C}\right)}=\frac{h \times 3}{8 \sqrt{5} m}=\frac{3}{8 \sqrt{5}} \times 12 \sqrt{5} \lambda$

$$
\vec{\lambda}_{A C}=\frac{9}{2} \lambda
$$

15. Answer (B, C)

Hint : $\Delta w=\frac{\lambda D}{d}$.

Solution :

Fringe width $\Delta w=\frac{\lambda D}{d}$
So if λ increases then fringe width also increases.
16. Answer (A, B , C)

Hint: $\frac{h c}{\lambda}=\Delta E_{0} Z^{2}\left(\frac{1}{n^{2}}-\frac{1}{m^{2}}\right)$

Solution :

$$
\begin{aligned}
& \frac{h c}{\lambda_{B}}=\Delta E_{0} Z^{2}\left(\frac{1}{4}-\frac{1}{9}\right)=\frac{5}{36} \Delta E_{0} Z^{2} \\
\therefore & \lambda_{B}=\frac{h c}{\Delta E_{0} Z^{2}} \frac{36}{5} \\
& \lambda_{L}=\frac{h c}{\Delta E_{0} Z^{2}} \\
\because & \lambda_{B}-\lambda_{L}=\Delta \lambda=\frac{h c}{\Delta E_{0} Z^{2}} \cdot \frac{31}{5} \\
\Rightarrow & \frac{5}{31} \Delta \lambda=\left(\frac{h c}{\Delta E_{0} Z^{2}}\right) \\
\because & \Delta E_{0}=R c h \\
\therefore & \frac{5}{31} \Delta \lambda \cdot R h c=\frac{h c}{Z^{2}} \\
\Rightarrow & R=\frac{31}{5 \Delta \lambda \cdot Z^{2}}
\end{aligned}
$$

Shortest wavelength of Balmer series

$$
\begin{aligned}
& \frac{h c}{\lambda_{B}^{\prime}}=\frac{\Delta E_{0} Z^{2}}{4} \\
\Rightarrow & \lambda_{B}^{\prime}=4\left[\frac{h c}{\Delta E_{0} Z^{2}}\right] \\
\Rightarrow & \lambda_{B}^{\prime}=4\left[\frac{5}{31} \Delta \lambda\right]=\frac{20 \Delta \lambda}{31}
\end{aligned}
$$

And longest wavelength of Lyman series

$$
\begin{aligned}
& \frac{h c}{\lambda_{L}^{\prime}}=\Delta E_{0} Z^{2}\left(1-\frac{1}{4}\right)=\frac{3}{4} \Delta E_{0} Z^{2} \\
\Rightarrow \quad & \lambda_{L}^{\prime}=\frac{4}{3}\left(\frac{h c}{\Delta E_{0} Z^{2}}\right)=\frac{4}{3} \cdot \frac{5}{31} \Delta \lambda \\
\Rightarrow \quad & \lambda_{L}^{\prime}=\frac{20}{93} \Delta \lambda
\end{aligned}
$$

17. Answer (A, B, C)

Hint:
The least count of the vernier caliper is the difference of the smallest unit on vernier scale and main scale.

Solution :

The least count of the vernier caliper is the difference of the smallest unit on vernier scale and main scale.
18. Answer (A, D)

Hint : Effective optical path difference :
$\mu_{2} t_{2}-\mu_{1} t_{1}+\left(t_{1}-t_{2}\right)$
Solution :

If $t_{1}>t_{2}$
Then phase lead by wave from S_{2}
$\left[\mu_{2} t_{2}+\left(t_{1}-t_{2}\right)-\mu_{1} t_{1}\right]$
So f ring will shift towards S_{2} to counter that much extra lead of phase.
19. Answer $A(Q) ; B(S) ; C(P, R) ; D(T)$

Hint : Fringe width $\Delta w=\frac{\lambda D}{d}$
Position of minima $(2 n+1) \frac{\lambda D}{2 d}$

Solution :

(A) If at S_{3} and S_{4} there is destructive interference then final intensity on second screen is zero
$\therefore \quad d_{1}=d_{2}=(2 n+1) \frac{\lambda D}{2 d}$
(B) If $d_{1}=\frac{3 \lambda D}{2 d}$ then destructive interference at S_{3} and if $d_{4}=\frac{\lambda D}{3 d}$ then resulting intensity at S_{4} is l_{0}. So final intensity at screen 2 , is l_{0}.
(C) If $d_{1}=d_{2}=\frac{\lambda D}{3 d}$ then resulting intensity at S_{3} and S_{4} are I_{0} and final intensity at screen 2 is $4 /$. Also if $d_{1}=\frac{\lambda D}{2 d}$ then intensity at S_{3} is zero and for $d_{2}=\frac{\lambda D}{d}$ the intensity at S_{4} is $4 / 0$. So final intensity at screen 2 is $4 / 0$.
(D) If constructive interference happens at S_{3} and S_{4} then find intensity at screen 2 is $16 / 0$.
20. Answer $\mathrm{A}(\mathrm{Q})$; $\mathrm{B}(\mathrm{S})$; $\mathrm{C}(\mathrm{R}, \mathrm{T})$; $\mathrm{D}(\mathrm{P})$

Hint : Apply Bohr's model.
Solution:

$$
\begin{aligned}
& \frac{m V^{2}}{r}=\frac{k Z e^{2}}{r^{2}} \\
& m v r=\frac{n n}{2 \pi} \\
& r_{n} \propto \frac{n^{2}}{Z} \\
& V_{n} \propto \frac{Z}{n} \\
& T=\frac{2 \pi r_{n}}{v_{n}} \\
& T \propto \frac{n^{3}}{Z^{2}} \\
& i=\frac{e}{T}=\frac{Z^{2}}{n^{3}} \\
& B \propto \frac{i}{r}=\frac{Z^{2} Z}{n^{3} n^{2}}=\frac{Z^{3}}{n^{5}}
\end{aligned}
$$

PART - II (CHEMISTRY)

21. Answer (6)

Hint:

Solution :

22. Answer (5)

Hint :

Solution :
$x^{\prime}=1$
$z^{\prime}=2$
$\mathrm{n}=2$
Nucleophilic substitution takes place via Sn2
23. Answer (3)

Hint :

Solution :
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NOH} \xrightarrow{\Delta}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}+\mathrm{C}_{2} \mathrm{H}_{4}$
$\left.>\mathrm{N}-\mathrm{H} \xrightarrow{\mathrm{HNO}_{2}}\right\rangle \mathrm{N} \rightarrow \mathrm{NO}$
Reactions A, D and E are correct.
24. Answer (4)

Hint :

Solution :
Q is

Each - CHO can produce an oxime.
25. Answer (3)

Hint : Isoelectric point is the pH when an amino acid exist in zwitterionic form and shows no net migration towards any electrode.

Solution :

$$
\begin{aligned}
\mathrm{pl} & =\frac{\mathrm{pK}_{\mathrm{a}_{1}}+\mathrm{pK}_{\mathrm{a}_{2}}}{2} \\
& =\frac{2+4}{2}=3
\end{aligned}
$$

26. Answer (8)

Hint :

(Benzoin condensation)

Solution :

Difference in molar mass, $M=64 ; \frac{M}{8}=8$
27. Answer (5)

Hint :

Solution :

A and B are non-aromatic compounds
Statements P, Q, R, U and V are incorrect.
28. Answer (1)

Hint:

Solution :
x = 1
Grignard reagent will not interact with product.
29. Answer (A, B, C)

Hint : The amines which can show optical activity, are resolvable.

Solution :

Amines which are bonded with four bulky groups and cyclic amines cannot undergo inversion.
30. Answer (C, D)

Hint : Correct order for basic strength is $\mathrm{C}>\mathrm{A}>$ D > B

Solution :

More is the availability of lone pair of e^{-}on N -atom, greater would be the basic strength.
31. Answer (C)

Hint :
All given species can give yellow ppt with 2, 4-DNP.

Solution :
Only Il can give yellow ppt with I_{2} in
NaOH .
32. Answer (A, B, C, D)

Hint : During Hoffmann bromamide degradation stereochemistry of migrating group does not change.

Solution :

P is

is

33. Answer (A, C)

Hint : Histamine is not an antacid. It stimulates the secretion of acid in stomach.

Solution :

Brompheniramine is an antihistaminics
34. Answer (C)

Polymer will yield upon ozonolysis

Solution :

Monomer of the polymer is

35. Answer (B, D)

Hint :

Hemiacetal forms are
 And these are reducing in nature.

Solution :

Both C_{1} and C_{2} are having hemiacetal that's why both are reducing.
36. Answer (A, B, D)

Hint :

Solution :
Ether do not undergo oxidation and in alkaline medium there is no hydrolysis that can occur on ether linkage.
37. Answer (A, B)

Hint : PCl_{5} cause substitution of -OH by -Cl group.

Solution :

38. Answer (A, B)

Hint : Ethers have lower boiling point than alcohols as there is hydrogen bonding involved in between two alcohol molecule.

Solution :

Compounds with multiple hydroxy functional group are having greater boiling point than mono hydroxy compound.
39. Answer $A(P, Q, S) ; B(P, R) ; C(P, R, T) ; D(R)$

Hint: Cellulose has β-links
Starch has α-links

Solution :

Sucrose upon hydrolysis gives α-D-glucose and β-D-fructose.
Maltose gives only α-D-glucose.
40. Answer $\mathrm{A}(\mathrm{P}, \mathrm{R})$; $\mathrm{B}(\mathrm{Q}) ; \mathrm{C}(\mathrm{Q}, \mathrm{S}, \mathrm{T})$; $\mathrm{D}(\mathrm{Q})$

Hint : Gauche and anti-form are diastereomers of each other.

Solution :

Mixture of E and Z isomer

PART - III (MATHEMATICS)

41. Answer (4)

Hint : Angle between two lines $=\frac{\bar{b}_{1} \cdot \bar{b}_{2}}{\left|\overline{b_{1}}\right|\left|\bar{b}_{2}\right|}$
(where b_{1} and b_{2} are the vectors along the lines)
Solution :

$$
\begin{aligned}
& \cos \alpha=\frac{a(\sin \theta-2)+b \sqrt{5} \cos \theta+(2 \sin \theta+1)}{\sqrt{(\sin \theta-2)^{2}+5 \cos ^{2} \theta+(2 \sin \theta+1)^{2}} \sqrt{a^{2}+b^{2}+1^{2}}} \\
& \Rightarrow \cos \alpha=\frac{\sin \theta(a+2)+b \sqrt{5} \cos \theta-2 a+1}{\sqrt{10} \sqrt{a^{2}+b^{2}+1}}
\end{aligned}
$$

$\because \quad \alpha$ is independent of θ, then $a+2=0$ and $b=0$
$\Rightarrow \cos \alpha=\frac{5}{\sqrt{10} \sqrt{5}}=\frac{1}{\sqrt{2}}$
$\Rightarrow \alpha=\frac{\pi}{4}$
42. Answer (9)

Hint : Use formula for division into groups.
Solution : Total number of ways of forming groups $=\frac{\underline{8}}{(\boxed{2})^{4} \cdot \underline{4}} \cdot \frac{\boxed{4}}{(\boxed{2})^{2} \cdot \underline{2}}$. If $5^{\text {th }}$ ranked player is
in the final, then he played a match against a higher ranked player in second round.
So in first round $5^{\text {th }}$ ranked player played a match against $6^{\text {th }}, 7^{\text {th }}$ or $8^{\text {th }}$ ranked player and remaining two of these played against each other.
Number of favourable ways for round one

$$
={ }^{3} C_{1} \cdot 1 \cdot \frac{\underline{4}}{(\underline{2})^{2} \underline{2}}
$$

And number of favourable ways for round two $=1$

Number of divisors of 36 will be 9 .
43. Answer (7)

Hint : Count cases when number of letters between A and E are 0,1 or 2
Solution :Total words = |8
There are 6 cases when number of letters between A and E (or A and I) is zero.
There are 4 cases when number of letters between A and E (or A and I) is one.
There are 2 cases when number of letters between A and E (or A and I) is two.
So, favourable words $=(\underline{2} \times \underline{5})$
Required probability $=\frac{12 \underline{2} \boxed{5}}{\boxed{8}}$
$\Rightarrow \quad P=\frac{1}{14}$
$\Rightarrow \frac{1}{2 P}=7$
44. Answer (6)

Hint : $P(A \cap B)=P(A) \cdot P(B)$
Solution : $P(A \cap B)=P(A) \cdot P(B)$
$\Rightarrow P(A)=\frac{1}{5}$
Now, $P\left(\frac{\bar{A}}{A \cup B}\right)=\frac{P(\bar{A} \cap(A \cup B))}{P(A \cup B)}$
$\Rightarrow P\left(\frac{\bar{A}}{A \cup B}\right)=\frac{P(B)-P(A \cap B)}{\frac{1}{5}+\frac{1}{2}-\frac{1}{10}}=\frac{\frac{1}{2}-\frac{1}{10}}{\frac{6}{10}}=\frac{2}{3}$
So, $9 P\left(\frac{\bar{A}}{A \cup B}\right)=6$
45. Answer (5)

Hint : Both the lines are parallel
Solution: $2 x-2 y+z-9=0=x+2 y+2 z+12$ is line of intersection of planes $P_{1}: 2 x-2 y+z$ $-9=0$ and $P_{2}: x+2 y+2 z+12=0$.

Another line $L: \frac{x}{2}=\frac{y}{1}=\frac{z}{-2}$ is parallel to both planes P_{1} and P_{2}.

Distance between L and $P_{1}=\left|\frac{9}{\sqrt{4+4+1}}\right|=3$
and distance between L and $P_{2}=\left|\frac{12}{\sqrt{4+4+1}}\right|=4$
then distance between the two lines
$=\sqrt{3^{2}+4^{2}}=5$
46. Answer (2)

Hint: One angle of rhombus is $\frac{\pi}{3}$
Solution :Angle between two given lines;
$\cos \theta=\frac{1}{\sqrt{2} \cdot \sqrt{2}}=\frac{1}{2}$
$\theta=\frac{\pi}{3}$
Area of rhombus $=2 \sqrt{3}$

$\frac{1}{2}\left(2 I_{1}\right)\left(2 I_{2}\right)=2 \sqrt{3}$
$I_{1} I_{2}=\sqrt{3}$
Also, $\frac{I_{2}}{I_{1}}=\frac{1}{\sqrt{3}}$
So $I_{1}=\sqrt{3}$ and $I_{2}=1$
Side length of rhombus $=\sqrt{l_{1}^{2}+I_{2}^{2}}=2$
47. Answer (5)

Hint :Slope of normal is 2.
Solution : $x y^{2}=8$
$\Rightarrow \frac{d y}{d x_{(2,2)}}=-\frac{1}{2}$
Slope of normal = 2
So, unit vector along normal $=\frac{i+2 j}{\sqrt{5}}=\vec{x}$
Length of projection $=\left|\frac{3-8}{\sqrt{5}}\right|=\sqrt{5}$
48. Answer (4)

Hint : Fundamental principle of counting.
Solution :Total combinations of a, b, c and $d=6^{4}$
$(a-3),(b-4),(c-5)$ and $(d-6)$ are integers.
Their product is 1 then
(i) All of them should be 1 (Not possible as $d \neq 7$)
(ii) All of them should be -1 (one case $a=2, b=3$, $c=4, d=5$)
(iii) Two of them are 1 and remaining two are -1 (three cases)
Total favourable cases $=4$

$$
\text { Required probability }=\frac{4}{6^{4}}
$$

49. Answer (A, C)

Hint : Probability of a selected number to be even is $\frac{3}{7}$ and to be odd is $\frac{4}{7}$

Solution : $(A$ and $B) a b c$ is even if at least one of a, b or c is even, so
Required probability $=1-\left(\frac{4}{7}\right)^{3}$

$$
=\frac{279}{7^{3}}
$$

(C) $(a b+c)$ is even then,

Case (1): If c is even then at least one of a or b is even.

Case (2) : If c is odd then both a and b are odd Required probability
$=\frac{3}{7}\left(1-\left(\frac{4}{7}\right)^{2}\right)+\left(\frac{4}{7}\right)^{3}=\frac{163}{7^{3}}$
(B) $(a+b+c)$ is even if all are even or anyone is even and remaining two are odd.
Required probability $=\left(\frac{3}{7}\right)^{3}+{ }^{3} C_{1} \cdot \frac{3}{7}\left(\frac{4}{7}\right)^{2}=\frac{171}{7^{3}}$
50. Answer (B, D)

Hint : $\because \frac{A D}{C D}=\frac{A B}{B C}$
Solution :

$\because \frac{A D}{C D}=\frac{A B}{B C}=\frac{3}{7}$
Using section formula;
$D\left(0,-\frac{1}{2}, \frac{1}{2}\right)$
(A) DR's of $B D \propto 2,-\frac{1}{2}, \frac{5}{2}$ or $4,-1,5$
(B) $B D=\sqrt{4+\frac{1}{4}+\frac{25}{4}}=\sqrt{\frac{21}{2}}$
(C) Area of

$$
\begin{aligned}
\Delta A B D & =\frac{1}{2}|\overrightarrow{B A} \times \overrightarrow{B D}|=\frac{1}{2}\left|-\frac{9}{2} \hat{i}-3 \hat{j}+3 \hat{k}\right| \\
& =\frac{\sqrt{153}}{4}
\end{aligned}
$$

(A) Area of

$$
\begin{aligned}
\Delta A B C & =\frac{1}{2}|\overrightarrow{B A} \times \overrightarrow{B C}|=\frac{1}{2}|-15 \hat{i}-10 \hat{j}+10 \hat{k}| \\
& =\frac{5 \sqrt{17}}{2}
\end{aligned}
$$

51. Answer (A, C, D)

Hint : Use Bayes theorem
Solution :Let events
$E_{1}=$ Coins show 2 heads (die X is rolled)
$E_{2}=$ Coins show 1 head (die Y is rolled)
$E_{3}=$ Coins show no head (die Z is rolled)
And $A=$ Die shows red face.

$$
\begin{array}{lll}
P\left(E_{1}\right)=\frac{1}{4} & P\left(E_{2}\right)=\frac{2}{4} & P\left(E_{3}\right)=\frac{1}{4} \\
P\left(\frac{A}{E_{1}}\right)=\frac{1}{6} & P\left(\frac{A}{E_{2}}\right)=\frac{3}{6} & P\left(\frac{A}{E_{3}}\right)=\frac{2}{6}
\end{array}
$$

$$
P\left(\frac{E_{3}}{A}\right)=\frac{P\left(E_{3}\right) \cdot P\left(\frac{A}{E_{3}}\right)}{P\left(E_{1}\right) \cdot P\left(\frac{A}{E_{1}}\right)+P\left(E_{2}\right) \cdot P\left(\frac{A}{E_{2}}\right)+P\left(E_{3}\right) \cdot P\left(\frac{A}{E_{3}}\right)}
$$

$$
=\frac{\frac{1}{4} \cdot \frac{2}{6}}{\frac{1}{4} \cdot \frac{1}{6}+\frac{2}{4} \cdot \frac{3}{6}+\frac{1}{4} \cdot \frac{2}{6}}
$$

$$
=\frac{2}{1+6+2}=\frac{2}{9}
$$

52. Answer (B, C, D)

Hint : Consider $\vec{c}=\lambda \vec{a}+\mu \vec{b}$

Solution :

$\because \vec{a}, \vec{b}, \vec{c}$ are coplanar then

Let $\vec{c}=\lambda \vec{a}+\mu \vec{b}$
$\vec{a} \cdot \vec{c}=\lambda \vec{a} \cdot \vec{a}+\mu \vec{a} \cdot \vec{b}$
$-\frac{1}{2}=\lambda+\mu \cos \theta$
Similarly $\vec{b} \cdot \vec{c}=\lambda \vec{a} \cdot \vec{b}+\mu \vec{b} \cdot \vec{b}$
$\cos \left(\frac{2 \pi}{3}-\theta\right)=\lambda \cos \theta+\mu$
From (i) and (ii)
$\lambda=-\frac{\sqrt{3}}{2} \cot \theta-\frac{1}{2}$ and $\mu=\frac{\sqrt{3}}{2} \operatorname{cosec} \theta$
So, $\bar{c}=-\left(\frac{\sqrt{3} \cot \theta+1}{2}\right) \bar{a}+\left(\frac{\sqrt{3}}{2} \operatorname{cosec} \theta\right) \bar{b}$
53. Answer (B, C, D)

Hint : Assume points $B(\vec{b})$ and $D(\vec{d})$ then use scalar product.
Solution : Consider A as origin and position vectors of B, D and C as $\vec{b}, \vec{d}, \vec{b}+\vec{d}$ respectively.
Here $|\vec{b}|=x$ and $|\vec{d}|=y$
Also $|\vec{b}+\vec{d}|=z$
$\Rightarrow \quad x^{2}+y^{2}+2 \vec{b} \cdot \vec{d}=z^{2}$

$$
\begin{equation*}
\overrightarrow{B D} \cdot \overrightarrow{D A}=(\vec{d}-\vec{b}) \cdot(-\vec{d}) \tag{i}
\end{equation*}
$$

$$
\begin{aligned}
& =-y^{2}+\vec{b} \cdot \vec{d} \\
& =-y^{2}+\frac{z^{2}-x^{2}-y^{2}}{2}(\text { from (i)) } \\
=-\frac{1}{2} x^{2} & -\frac{3}{2} y^{2}+\frac{1}{2} z^{2}
\end{aligned}
$$

54. Answer (B, C, D)

Hint : Equation must be inconsistent and planes should be non parallel.

Solution :

$\left|\begin{array}{ccc}1 & k & 1 \\ 1 & 1 & k \\ 1 & -3 & 3\end{array}\right|=0$
$\Rightarrow k=1,-1$
But $k \neq 1$ (The two planes will be parallel so triangular prism can't be formed).
55. Answer (A, C, D)

Hint : $|\lambda \vec{a}+\mu \vec{b}|^{2}=4 \lambda^{2}+\mu^{2}+2 \lambda \mu$
Solution : $|\lambda \vec{a}+\mu \vec{b}|^{2}=\lambda^{2}|\vec{a}|^{2}+\mu^{2}|\vec{b}|^{2}+2 \lambda \mu \vec{a} \cdot \vec{b}$
$=4 \lambda^{2}+\mu^{2}+2 \lambda \mu$
(A) $|\vec{a}-\vec{b}|^{2}=4+1-2=3 \Rightarrow|\vec{a}-\vec{b}|=\sqrt{3}$
(B) $\left|\vec{b}-\frac{1}{2} \vec{a}\right|^{2}=1+1-1=1 \Rightarrow\left|\vec{b}-\frac{1}{2} \vec{a}\right|=1$
(C) $\left|\frac{3 \vec{a}-7 \vec{b}}{2}\right|^{2}=\frac{36+49-42}{4}=\frac{43}{4}$

$$
\Rightarrow|3 \vec{a}-7 \vec{b}|=\sqrt{\frac{43}{2}}
$$

(D) $|2 \vec{a}-5 \vec{b}|^{2}=16+25-20=21$

$$
|2 \vec{a}-5 \vec{b}|=\sqrt{21}
$$

56. Answer (A, B, C)

Hint : $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{b} \cdot \vec{c})-(\vec{a} \cdot \vec{b}) \vec{c}$
Solution : $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \times \vec{c}$
$\Rightarrow(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{c}) \vec{a}$
$\Rightarrow(\vec{a} \cdot b) \vec{c}=(\vec{b} \cdot \vec{c}) \vec{a}$
So either \vec{a} and \vec{c} are collinear or
$\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=0$
which means either \vec{b} is a null vector or \vec{b} is perpendicular to both \vec{a} and \vec{c}.
57. Answer (A, B, D)

Hint : Use binomial distribution
Solution : Probability of A winning the game
$={ }^{3} C_{2} \cdot p^{2}(1-p)+{ }^{3} C_{3} p^{3}$
$=p^{2}[3-2 p]$
Probability of B winning the game
$={ }^{5} C_{3} p^{3}(1-p)^{2}+{ }^{5} C_{4} p^{4}(1-p)+{ }^{5} C_{5} p^{5}$
$=p^{3}\left[6 p^{2}-15 p+10\right]$
Now, $p^{2}(3-2 p)=p^{3}\left(6 p^{2}-15 p+10\right)$
$\Rightarrow p=0,1, \frac{1}{2}$
58. Answer (B, C)

Hint : If odds in favour of an event is p then its probability is $\frac{p}{1+p}$

Solution : Let odds in favour of an event is p then its probability is $\frac{p}{1+p}$
$p=3 q$
Probability of $1^{\text {st }}$ event $=\frac{p}{1+p}$
Probability $2^{\text {nd }}$ event $=\frac{q}{1+q}$
$\frac{p}{1+p}=2\left(\frac{q}{1+q}\right)$
From (i) and (ii) $p=0$ or 1
Probability of $1^{\text {st }}$ event $=0$ or $\frac{1}{2}$
59. Answer $A(S, T) ; B(P, S) ; C(T) ; D(R, T)$

Hint : $p(E)=\frac{n(E)}{n(S)}$

Solution :

Total number in set $S=5 \times 5 \times 4 \times 3=300$
(A) If number is divisible by 4 , the last two digits will be $04,12,20,24,32,40$, or 52 .

Total number of numbers $=12 \times 3+9 \times 4=72$

$$
\text { Required probability }=\frac{72}{300}=\frac{6}{25}
$$

(B) There should be either only one odd digit or only even digit in the number.
Total such numbers $={ }^{3} C_{1} \cdot 33 \underline{3}+{ }^{2} C_{1} \cdot 44+3 \mid 3$

$$
\begin{aligned}
& =54+48+18 \\
& =120
\end{aligned}
$$

Required probability $=\frac{120}{300}=\frac{2}{5}$
(C) There are only 5 combinations of 4 digits possible (1, 2, 4, 5); (0, 3, 4, 5); (0, 2, 3, 4); $(0,1,3,5)$ or $(0,1,2,3)$
Number of numbers divisible by 6 using
$(1,2,4,5)=12$
Number of numbers divisible by 6 using

$$
(0,3,4,5)=10
$$

Number of numbers divisible by 6 using
$(0,2,3,4)=14$
Number of numbers divisible by 6 using $(0,1,3,5)=6$
Number of numbers divisible by 6 using
$(0,1,2,3)=10$
Total numbers divisible by $6=52$
Required probability $=\frac{52}{300}=\frac{13}{75}$
(D) If $a b c d$ is divisible by 11 then
$a+c=b+d$
Total number of numbers divisible by
$11=48$
Required probability $=\frac{48}{300}=\frac{4}{25}$
60. Answer $\mathrm{A}(\mathrm{T})$; $\mathrm{B}(\mathrm{Q})$; C(P, R); D(S)

Hint : Three faces of a triangular prism are parallelogram.

Solution :

(A) Let point $B^{\prime}(x, y, z)$
$\because A A^{\prime} B^{\prime} B$ is a parallelogram

(1, 2, 5)
So, $x_{1}+0=2-1 \Rightarrow x_{1}=1$
$y_{1}+0=1+1 \Rightarrow y_{1}=2$
$z_{1}+0=2+3 \Rightarrow z_{1}=5$
$B^{\prime}(1,2,5)$
(B) Similarly $C^{\prime}(2,4,4)$
(C) Point of intersection of diagonals of face
$A A^{\prime} B^{\prime} B$ is $\left(\frac{1}{2}, 1, \frac{5}{2}\right)$
Point of intersection of diagonals of face $A A^{\prime} C^{\prime} C$ is $(1,2,2)$
Point of intersection of diagonals of face
$B B^{\prime} C^{\prime} C$ is $\left(\frac{1}{2}, \frac{5}{2}, 3\right)$
(D) D^{\prime} is midpoint of B^{\prime} and C^{\prime}, so
$D^{\prime}\left(\frac{3}{2}, 3, \frac{9}{2}\right)$

