All India Aakash Test Series for JEE (Advanced)-2020

TEST - 4A (Paper-1) - Code-A

Test Date : 24/11/2019

ANSWERS								
PHYSICS		CHEMISTRY		MATHEMATICS				
1.	(2)	21.	(1)	41.	(4)			
2.	(7)	22.	(5)	42.	(5)			
3.	(3)	23.	(8)	43.	(2)			
4.	(2)	24.	(3)	44.	(5)			
5.	(6)	25.	(4)	45.	(6)			
6.	(2)	26.	(3)	46.	(7)			
7.	(4)	27.	(5)	47.	(9)			
8.	(5)	28.	(6)	48.	(4)			
9.	(A, D)	29.	(A, B)	49.	(B, C)			
10.	(A, B, C)	30.	(A, B)	50.	(A, B, D)			
11.	(A, B, C)	31.	(A, B, D)	51.	(A, B, C)			
12.	(B, C)	32.	(B, D)	52.	(A, C, D)			
13.	(A, C, D)	33.	(C)	53.	(B, C, D)			
14.	(B, C, D)	34.	(A, C)	54.	(B, C, D)			
15.	(A, B)	35.	(A, B, C, D)	55.	(B, C, D)			
16.	(A, C)	36.	(C)	56.	(A, C, D)			
17.	(A, C)	37.	(C, D)	57.	(B, D)			
18.	(B, D)	38.	(A, B, C)	58.	(A, C)			
19.	$A \to (Q)$	39.	$A \to (P,R)$	59.	$A \rightarrow (T)$			
	$B \to (S)$		$B \to (Q)$		$B \to (Q)$			
	$C \rightarrow (R, T)$		$C \to (Q,S,T)$		$C \rightarrow (P, R)$			
	$D \to (P)$		$D \to (Q)$		D ightarrow (S)			
20.	$A \rightarrow (Q)$	40.	$A \to (P,Q,S)$	60.	$A \to (S,T)$			
	$B \rightarrow (S)$		$B \rightarrow (P, R)$		$B \rightarrow (P, S)$			
	$C \to (P,R)$		$C \rightarrow (P, R, T)$		$C \rightarrow (T)$			
	$D \to (T)$		$D \rightarrow (R)$		$D \rightarrow (R, T)$			

HINTS & SOLUTIONS

PART - I (PHYSICS)

1. Answer (2)

Hint :
$$\frac{hc}{X_{\min}} = \Delta E - \phi$$

Solution :

$$\frac{\lambda_{\rm H_2}}{\lambda_{\rm gas}} = \frac{\sqrt{2m\left(\frac{3}{4}z^2\Delta E_0 - \phi\right)}}{\sqrt{2m\left(\frac{3}{4}\Delta E_0 - \phi\right)}}$$
$$\Rightarrow \quad \frac{\frac{3}{4}\Delta E_0 z^2 - \phi}{\frac{3}{4}\Delta E_0 - \phi} = \frac{61}{10} \qquad \dots (i)$$

Also,
$$\frac{3}{4}\Delta E_0 z^2 - \frac{\Delta E_0 z^2}{4} = 2\Delta E_0$$

 $\Rightarrow \frac{\Delta E_0 z^2}{2} = 2\Delta E_0 \quad \therefore \quad z = 2$

Now in equation (i)

$$10(3\Delta E_0 - \phi) = 61\left(\frac{3}{4}\Delta E_0 - \phi\right)$$
$$\Rightarrow \quad 30\Delta E_0 - 10\phi = \frac{183}{4}\Delta E_0 - 61\phi$$
$$\Rightarrow \quad 51\phi = \frac{63}{4}\Delta E_0$$
$$\Rightarrow \quad \phi = \frac{63 \times 13.6}{4 \times 51} \text{ eV} = \frac{21 \times 2}{10} \text{ eV}$$
$$\therefore \quad K = 2$$

Hint:
$$A_R^2 = A_1^2 + A_2^2 + 2A_1A_2\cos\phi$$

Solution :

Let the amplitude of wave through S_1 and S_2 be A. So, if $A^2 = I_0$

Then
$$4A^2 = I \implies A^2 = \frac{I}{4}$$

After passing through P_1 amplitude would be A

and after passing through P_2 amplitude would be $\frac{A}{2}$

$$\Delta x = (\mu_1 t - \mu_2 t) = 0.5 \times 40 \times 10^{-6}$$

$$\therefore \quad \Delta \phi = \frac{1}{2} \times 40 \times 10^{-6} \times \frac{2\pi}{4000} \times 10^{10} = 50 \times 2\pi$$

So, construction interference would occur at O

$$\therefore \quad A_{\text{result}} = A + \frac{A}{2} = \frac{3A}{2}$$

and $I' = \frac{9}{4}A^2 = \frac{9}{4} \cdot \frac{I}{4} = \left(\frac{9}{16}\right)I$
$$\therefore \quad x = 9, y = 16$$

$$\Rightarrow \quad y - x = 7$$

3. Answer (3)

Hint : $mv_0 = 2mv \cos 30^\circ$; $\frac{1}{2}mv_0^2 = x \left[\frac{3}{4}\Delta E_0\right]$

Solution :

Let the final speed of (both) the H-atom and neutron is v then, $mv_0 = 2mv \cos 30^\circ$

$$\Rightarrow v = \frac{v_0}{\sqrt{3}}$$
Also, $\frac{1}{2}mv_0^2 = \frac{1}{2} \cdot 2m \cdot \frac{v_0^2}{3} + \frac{3}{4}\Delta E_0$

$$\therefore \frac{1}{2}mv_0^2 \left(1 - \frac{2}{3}\right) = \frac{3}{4}\Delta E_0$$

$$\Rightarrow \frac{1}{2}mv_0^2 = \frac{9}{4}\Delta E_0$$

$$\because \frac{1}{2}mv_0^2 = x\left(\frac{3}{4}\Delta E_0\right)$$

$$\therefore x\left[\frac{3}{4}\Delta E_0\right] = \frac{9}{4}\Delta E_0$$

$$\therefore x = 3$$

4. Answer (2) Hint : $d \sin\theta = (2\mu t + t) - 2\mu t$ Solution : $d \sin\theta = (2\mu t + t) - 2\mu t$

$$\Rightarrow d\frac{y}{D} = t \Rightarrow \qquad y = \frac{Dt}{d}$$
$$\Rightarrow \quad y = \frac{1 \times 2 \times 10^{-5}}{1 \times 10^{-3}} = 2 \times 10^{-2} \text{ m}$$

5. Answer (6)

Hint: $\Delta E_0 \left| 1 - \frac{1}{n^2} \right| = \Delta E$

Solution : $\Delta E = 30 \text{ eV}$ 42.5% of 30 eV = 12.75 eV

$$13.6 \left| 1 - \frac{1}{n^2} \right| = 12.75$$

So we get n = 4 (is the energy level to which hydrogen gets excited) So, number of wavelengths = 6

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

6. Answer (2)

Hint:
$$d\sin\theta = \frac{\lambda}{2}$$
 |for 1st minima $\theta = 0.75^{\circ}$ |

Solution :

For first minima $\theta = 0.75^{\circ}$

$$\therefore \quad d = \frac{\lambda}{2\sin(0.75^\circ)} = 1.98 \times 10^{-5} \text{ m}$$

 $\Rightarrow d \approx 2 \times 10^{-2} \text{mm}$

7. Answer (4)

Hint : ΔE (for reaction) = 4(7.30 MeV) -3(2.40 MeV) -2(1.00 MeV)

Solution :

 $\Delta E (\text{for reaction}) = [4(7.30) - 3(2.40) - 2(1.0)] \text{MeV}$ $\Rightarrow \Delta E = 20 \text{ MeV}$

 $\Rightarrow \frac{1}{5}^{\text{th}}$ of this energy will be taken away by

helium and rest are for neutron.

8. Answer (5)

Hint :

Minima will be at the position where path differences are 4.5λ , 3.5λ , 2.5λ , 1.5λ , 0.5λ .

Solution :

Minima will be at those points where path differences are 4.5 λ , 3.5 λ , 2.5 λ , 1.5 λ and 0.5 λ So five minima are observed.

9. Answer (A, D)

Hint : Effective optical path difference :

 $\mu_2 t_2 - \mu_1 t_1 + (t_1 - t_2)$ Solution :

If $t_1 > t_2$

Then phase lead by wave from S₂

$$\left[\mu_2 t_2 + \left(t_1 - t_2\right) - \mu_1 t_1\right]$$

So f ring will shift towards S_2 to counter that much extra lead of phase.

10. Answer (A, B, C)

Hint :

The least count of the vernier caliper is the difference of the smallest unit on vernier scale and main scale.

Solution :

The least count of the vernier caliper is the difference of the smallest unit on vernier scale and main scale.

Hint :
$$\frac{hc}{\lambda} = \Delta E_0 Z^2 \left(\frac{1}{n^2} - \frac{1}{m^2} \right)$$

Solution :

$$\frac{hc}{\lambda_B} = \Delta E_0 Z^2 \left(\frac{1}{4} - \frac{1}{9}\right) = \frac{5}{36} \Delta E_0 Z^2$$
$$\therefore \quad \lambda_B = \frac{hc}{\Delta E_0 Z^2} \frac{36}{5}$$
$$\lambda_L = \frac{hc}{\Delta E_0 Z^2}$$
$$\therefore \quad \lambda_B - \lambda_L = \Delta \lambda = \frac{hc}{\Delta E_0 Z^2} \cdot \frac{31}{5}$$
$$\Rightarrow \quad \frac{5}{31} \Delta \lambda = \left(\frac{hc}{\Delta E_0 Z^2}\right)$$
$$\therefore \quad \Delta E_0 = Rch$$
$$\therefore \quad \frac{5}{31} \Delta \lambda \cdot Rhc = \frac{hc}{Z^2}$$
$$\Rightarrow \quad R = \frac{31}{5\Delta\lambda \cdot Z^2}$$

Shortest wavelength of Balmer series

$$\frac{hc}{\lambda'_{B}} = \frac{\Delta E_{0}Z^{2}}{4}$$

$$\Rightarrow \quad \lambda'_{B} = 4 \left[\frac{hc}{\Delta E_{0}Z^{2}}\right]$$

$$\Rightarrow \quad \lambda'_{B} = 4 \left[\frac{5}{31}\Delta\lambda\right] = \frac{20\Delta\lambda}{31}$$

And longest wavelength of Lyman series

$$\frac{hc}{\lambda'_{L}} = \Delta E_{0}Z^{2}\left(1 - \frac{1}{4}\right) = \frac{3}{4}\Delta E_{0}Z^{2}$$
$$\Rightarrow \quad \lambda'_{L} = \frac{4}{3}\left(\frac{hc}{\Delta E_{0}Z^{2}}\right) = \frac{4}{3} \cdot \frac{5}{31}\Delta\lambda$$
$$20$$

$$\Rightarrow \quad \lambda'_L = \frac{20}{93} \Delta \lambda$$

12. Answer (B, C)

Hint :
$$\Delta w = \frac{\lambda D}{d}$$

Solution :

Fringe width
$$\Delta w = \frac{\lambda D}{d}$$

So if λ increases then fringe width also increases.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

13. Answer (A, C, D)
Hint :
$$\lambda = \frac{h}{P}$$

Solution :
 $2m 6(\hat{i} + 2\hat{j}) = P_B$
 $\therefore \quad \lambda = \frac{h}{12m\sqrt{5}}$
 $\Rightarrow \quad \frac{h}{m} = 12\sqrt{5} \ \lambda$
 $P_A = 2m(\hat{i} + 2\hat{j}) = 2m\sqrt{5}$
 $\therefore \quad \lambda_A = \frac{h}{2\sqrt{5}m} = \frac{12\sqrt{5} \ \lambda}{2\sqrt{5}} = 6\lambda$
 $v_0 = \frac{m(2\hat{i} + 4\hat{j}) + 2m(6\hat{i} + 12\hat{j})}{3m} = \frac{14m\hat{i} + 28m\hat{j}}{3m}$
 $P_{cm} = 3mv_0 = 14m(\hat{i} + 2\hat{j})$
 $\Rightarrow \quad \lambda_{cm} = \frac{h}{P_{cm}} = \frac{h}{14\sqrt{5}m} = \frac{12\sqrt{5}\lambda}{14\sqrt{5}} = \frac{6}{7}\lambda$
Now, $\vec{v}_{AC} = \vec{v}_{Aqr} - \vec{v}_{cqr} = 2\hat{i} + 4\hat{j} - \frac{14}{3}\hat{i} - \frac{28}{3}\hat{j}$
 $\vec{v}_{AC} = \frac{-8}{3}\hat{i} - \frac{16}{3}\hat{j} = \frac{-8}{3}(\hat{i} + 2\hat{j})$
 $\therefore \quad |\vec{P}_{AC}| = \frac{8m}{3}\sqrt{5}$
 $\therefore \quad \vec{\lambda}_{AC} = \frac{h}{2}\lambda$

14. Answer (B, C, D)

Hint : Will be shifted upward by
$$\frac{d^2}{4\lambda D}$$

Solution :

- \therefore Fringe width will remain same as $\frac{\lambda D}{d}$
- \therefore Number of fringe crossing through O is

$$N = \frac{d.d}{4\lambda D} = \frac{d^2}{4\lambda D}$$

15. Answer (A, B)

Hint :

$$R_n = R_0 (n^2)$$

 $\therefore \quad A_n = 4\pi R_0^2 \cdot n^4$

$$R_n = R_0 n^2$$

$$\therefore \quad A_n = 4\pi R_0^2 \cdot n^4$$

And
$$A_1 = 4\pi R_0^2$$

 $\therefore \quad \frac{A_n}{A_1} = n^4$
 $\Rightarrow \quad \ln\left(\frac{A_n}{A_1}\right) = 4\ln n$

Straight line of slope 4 and pass through origin.

16. Answer (A, C)

Hint : Least count = $\left(\frac{1}{50}\right)$ mm.

Solution :

Least count =
$$\frac{1}{50}$$
 mm = 0.02 mm
Reading = (1 mm × 18) + 0.02 × 2

17. Answer (A, C)

Hint :
$$\frac{hc}{\lambda} = \Delta E_0 (Z-1)^2 \cdot \frac{3}{4}$$
 (for K_α lines)
Solution :

$$\frac{hc}{\lambda_z} = \Delta E_0 (Z-1)^2 \cdot \frac{3}{4}$$

$$\frac{hc}{\lambda_1} = \Delta E_0 (Z_1-1)^2 \frac{3}{4}$$

$$\frac{hc}{\lambda_2} = \Delta E_0 (Z_2-1)^2 \cdot \frac{3}{4}$$

$$\therefore \quad \frac{\lambda_z}{\lambda_1} = 4 = \frac{(Z_1-1)^2}{(Z-1)^2}$$

$$\Rightarrow \quad \frac{Z_1-1}{Z-1} = 2$$

$$\therefore \quad Z_1 = 2Z - 1$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Similarly,
$$\frac{\lambda_z}{\lambda_2} = \frac{(Z_2 - 1)^2}{(Z - 1)^2} =$$

$$\Rightarrow \quad \frac{Z_2 - 1}{Z - 1} = \frac{1}{2}$$

$$Z + 1$$

$$\Rightarrow Z_2 = \frac{-1}{2}$$

18. Answer (B, D)

Hint : $N = N_0 e^{-\lambda t}$

Solution :

Let N_0 be the number of active nuclei at 6 : 10 AM in 1 mL of dose.

 $\frac{1}{4}$

Then at 8 : 00 AM, number of active nuclei becomes $\frac{N_0}{2}$ in 1 mL. So effectively $\frac{N_0}{2}$ no. of nuclei is to be administrated.

$$\Rightarrow$$
 $(1 \text{ mL}) \cdot \frac{N_0}{2} = \text{constant}$

At 7 : 05 AM let N_1 be the active nuclei then

$$N_{1} = \frac{N_{0}}{\frac{\ln 2 \times 55}{e^{-110}}} = \frac{N_{0}}{\sqrt{2}}$$
So $x \cdot \frac{N_{0}}{\sqrt{2}} = (1 \text{ mL}) \frac{N_{0}}{2}$

$$\Rightarrow \quad x = \left(\frac{1}{\sqrt{2}}\right) \text{mL}$$
At 9 : 50 $N_{3} = \frac{N_{0}}{4}$ And at 8 : 55 AM. $N_{2} = \frac{N_{0}}{2\sqrt{2}}$

$$\therefore \quad \frac{(1 \text{ mL}) \frac{N}{2}}{\text{At 8 : 00 AM}} = \frac{(\sqrt{2} \text{ mL}) \frac{N_{0}}{2\sqrt{2}}}{\text{At 8 : 55 AM}} = \frac{(2 \text{ mL}) \left(\frac{N_{0}}{4}\right)}{\text{At 9 : 00 AM}}$$

19. Answer A(Q); B(S); C(R, T); D(P)
Hint : Apply Bohr's model.
Solution :

 $\frac{mV^2}{r} = \frac{kZe^2}{r^2}$ $mvr = \frac{nn}{2\pi}$ $r_n \propto \frac{n^2}{Z}$ $V_n \propto \frac{Z}{n}$ $T = \frac{2\pi r_n}{v_n}$ $T \propto \frac{n^3}{Z^2}$

$$i = \frac{e}{T} = \frac{Z^2}{n^3}$$
$$B \propto \frac{i}{r} = \frac{Z^2 Z}{n^3 n^2} = \frac{Z^3}{n^5}$$

_2

20. Answer A(Q); B(S); C(P, R); D(T)

Hint : Fringe width $\Delta w = \frac{\lambda D}{d}$

Position of minima $(2n+1)\frac{\lambda D}{2d}$

Solution :

(A) If at S_3 and S_4 there is destructive interference then final intensity on second screen is zero

$$\therefore \quad d_1 = d_2 = (2n+1)\frac{\lambda D}{2d}$$

(B) If $d_1 = \frac{3\lambda D}{2d}$ then destructive interference at S_3 and if $d_4 = \frac{\lambda D}{3d}$ then resulting intensity at

 S_4 is I_0 . So final intensity at screen 2, is I_0 .

- (C) If $d_1 = d_2 = \frac{\lambda D}{3d}$ then resulting intensity at S_3 and S_4 are l_0 and final intensity at screen 2 is $4l_0$. Also if $d_1 = \frac{\lambda D}{2d}$ then intensity at S_3 is zero and for $d_2 = \frac{\lambda D}{d}$ the intensity at S_4 is $4l_0$. So final intensity at screen 2 is $4l_0$.
- (D) If constructive interference happens at S_3 and S_4 then find intensity at screen 2 is $16 l_0$.

PART - II (CHEMISTRY)

21. Answer (1)

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2020 Test - 4A (Paper-1) (Code-A)_(Hints & Solutions)

Solution :

x = 1

Grignard reagent will not interact with product.

22. Answer (5)

Hint :

Solution :

A and B are non-aromatic compounds Statements P, Q, R, U and V are incorrect.

23. Answer (8)

Hint :

(Benzoin condensation)

Ph --- CHO + Zn + CH2 ---COOC,H **B**r CH - CH - COOC H Ph-CH=CH-COOH

Solution :

Difference in molar mass, M = 64; $\frac{M}{8} = 8$

24. Answer (3)

Hint : Isoelectric point is the pH when an amino acid exist in zwitterionic form and shows no net migration towards any electrode.

Solution :

$$pI = \frac{pK_{a_1} + pK_{a_2}}{2}$$
$$= \frac{2+4}{2} = 3$$

25. Answer (4)

Hint :

Solution :

Each — CHO can produce an oxime.

26. Answer (3)

Hint :

Solution :

$$(C_2H_5)_4$$
 NOH $\xrightarrow{\Delta} (C_2H_5)_3$ N + C₂H₄
>N - H $\xrightarrow{HNO_2}$ > N \rightarrow NO

Reactions A, D and E are correct.

27. Answer (5)

Hint : Î OF С (X) CH. NH./OH OH H,O' С - OH Ö С NH. (Y) CH. NH. H.N - CH (Z) Solution : x′ = 1 z' = 2

Nucleophilic substitution takes place via S_N2

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 4A (Paper-1) (Code-A)_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2020

28. Answer (6)

Hint :

Solution :

$$\mathsf{R} - \mathsf{NO}_2 \xrightarrow{\mathsf{+6e}} \mathsf{R} - \mathsf{NH}_2$$

29. Answer (A, B)

Hint : Ethers have lower boiling point than alcohols as there is hydrogen bonding involved in between two alcohol molecule.

Solution :

Compounds with multiple hydroxy functional group are having greater boiling point than mono hydroxy compound.

30. Answer (A, B)

Hint : PCl₅ cause substitution of —OH by — Cl group.

Solution :

31. Answer (A, B, D)

Hint :

Solution :

Ether do not undergo oxidation and in alkaline medium there is no hydrolysis that can occur on ether linkage.

32. Answer (B, D)

Hint :

Hemiacetal forms are

Solution :

Both C₁ and C₂ are having hemiacetal that's why both are reducing.

33. Answer (C)

Solution :

Monomer of the polymer is

34. Answer (A, C)

Hint : Histamine is not an antacid. It stimulates the secretion of acid in stomach.

Solution :

Brompheniramine is an antihistaminics

35. Answer (A, B, C, D)

Hint : During Hoffmann bromamide degradation stereochemistry of migrating group does not change.

Solution :

36. Answer (C)

Hint :

All given species can give yellow ppt with 2, 4-DNP.

Solution :

can give yellow ppt with I2 in Only NaOH.

37. Answer (C, D)

Hint : Correct order for basic strength is C > A > D > B

Solution :

More is the availability of lone pair of e- on N-atom, greater would be the basic strength.

38. Answer (A, B, C)

Hint : The amines which can show optical activity, are resolvable.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2020 Test - 4A (Paper-1) (Code-A)_(Hints & Solutions)

Solution :

Amines which are bonded with four bulky groups and cyclic amines cannot undergo inversion.

39. Answer A(P, R); B(Q); C(Q, S, T); D(Q)
Hint : Gauche and anti-form are diastereomers of each other.
Solution :

Pure enantiomer

Pure enantiomer

40. Answer A(P, Q, S); B(P, R); C(P, R, T); D(R)
Hint : Cellulose has β-links
Starch has α-links
Solution :
Sucrose upon hydrolysis gives α-D-glucose and β-D-fructose.

Maltose gives only α -D-glucose.

PART - III (MATHEMATICS)

41. Answer (4)

Hint : Fundamental principle of counting.

Solution :Total combinations of *a*, *b*, *c* and $d = 6^4$

(a-3), (b-4), (c-5) and (d-6) are integers.

Their product is 1 then

- (i) All of them should be 1 (Not possible as $d \neq 7$)
- (ii) All of them should be −1 (one case *a* = 2, *b* = 3,
 c = 4, *d* = 5)
- (iii)Two of them are 1 and remaining two are -1 (three cases)

Total favourable cases = 4

Required probability = $\frac{4}{6^4}$

42. Answer (5)

Hint :Slope of normal is 2.

Solution : $xy^2 = 8$

$$\Rightarrow \frac{dy}{dx_{(2,2)}} = -\frac{1}{2}$$

Slope of normal = 2

So, unit vector along normal
$$=\frac{i+2j}{\sqrt{5}}=\vec{x}$$

Length of projection
$$= \left| \frac{3-8}{\sqrt{5}} \right| = \sqrt{5}$$

43. Answer (2)

Hint : One angle of rhombus is $\frac{\pi}{3}$

Solution : Angle between two given lines;

$$\cos\theta = \frac{1}{\sqrt{2} \cdot \sqrt{2}} = \frac{1}{2}$$

$$\theta = \frac{\pi}{3}$$

Area of rhombus = $2\sqrt{3}$

So $I_1 = \sqrt{3}$ and $I_2 = 1$

Side length of rhombus $=\sqrt{I_1^2 + I_2^2} = 2$

44. Answer (5)

Hint : Both the lines are parallel

Solution : 2x - 2y + z - 9 = 0 = x + 2y + 2z + 12is line of intersection of planes $P_1 : 2x - 2y + z - 9 = 0$ and $P_2 : x + 2y + 2z + 12 = 0$.

Another line $L: \frac{x}{2} = \frac{y}{1} = \frac{z}{-2}$ is parallel to both planes P_1 and P_2 .

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Distance between *L* and
$$P_1 = \left| \frac{9}{\sqrt{4+4+1}} \right| = 3$$

and distance between *L* and $P_2 = \left| \frac{12}{\sqrt{4+4+1}} \right| = 4$

then distance between the two lines

$$=\sqrt{3^2+4^2}=5$$

45. Answer (6)

Hint :
$$P(A \cap B) = P(A) \cdot P(B)$$

Solution :
$$P(A \cap B) = P(A) \cdot P(B)$$

$$\Rightarrow P(A) = \frac{1}{5}$$

Now,
$$P\left(\frac{\bar{A}}{A \cup B}\right) = \frac{P\left(\bar{A} \cap (A \cup B)\right)}{P(A \cup B)}$$

$$\Rightarrow P\left(\frac{\bar{A}}{A \cup B}\right) = \frac{P(B) - P(A \cap B)}{\frac{1}{5} + \frac{1}{2} - \frac{1}{10}} = \frac{\frac{1}{2} - \frac{1}{10}}{\frac{6}{10}} = \frac{2}{3}$$
So, $9P\left(\frac{\bar{A}}{A \cup B}\right) = 6$

46. Answer (7)

Hint : Count cases when number of letters between *A* and *E* are 0, 1 or 2

Solution :Total words = |8|

There are 6 cases when number of letters between A and E (or A and I) is zero.

There are 4 cases when number of letters between A and E (or A and I) is one.

There are 2 cases when number of letters between A and E (or A and I) is two.

So, favourable words = $(|2 \times |5)$

Required probability = $\frac{12|2|5}{|8|}$

$$\Rightarrow P = \frac{1}{14}$$
$$\Rightarrow \frac{1}{2P} = 7$$

47. Answer (9)

Hint : Use formula for division into groups.

Solution : Total number of ways of forming groups = $\frac{\underline{|8|}}{(\underline{|2|}^4 \cdot \underline{|4|}} \cdot \frac{\underline{|4|}}{(\underline{|2|}^2 \cdot \underline{|2|})}$. If 5th ranked player is

in the final, then he played a match against a higher ranked player in second round.

So in first round 5th ranked player played a match against 6th, 7th or 8th ranked player and remaining two of these played against each other.

Number of favourable ways for round one

$$= {}^{3}C_{1} \cdot 1 \cdot \frac{|4|}{(|2|)^{2}|2|}$$

And number of favourable ways for round two = 1

Required probability
$$= \frac{{}^{3}C_{1} \cdot \frac{|4}{(|2)^{2}|2} \times 1}{\frac{|8}{(|2)^{4}|4} \cdot \frac{|4}{(|2)^{2}|2}}$$
$$= \frac{1}{35}$$

Number of divisors of 36 will be 9.

48. Answer (4)

Hint : Angle between two lines = $\frac{\overline{b}_1 \cdot \overline{b}_2}{|\overline{b}_1| |\overline{b}_2|}$

(where *b*₁ and *b*₂ are the vectors along the lines) **Solution :**

$$\cos \alpha = \frac{a(\sin \theta - 2) + b\sqrt{5}\cos \theta + (2\sin \theta + 1)}{\sqrt{(\sin \theta - 2)^2 + 5\cos^2 \theta + (2\sin \theta + 1)^2}\sqrt{a^2 + b^2 + 1^2}}$$
$$\Rightarrow \cos \alpha = \frac{\sin \theta (a + 2) + b\sqrt{5}\cos \theta - 2a + 1}{\sqrt{10}\sqrt{a^2 + b^2 + 1}}$$

 \therefore α is independent of θ , then a + 2 = 0 and b = 0

$$\Rightarrow \cos \alpha = \frac{5}{\sqrt{10}\sqrt{5}} = \frac{1}{\sqrt{2}}$$

 $\Rightarrow \alpha = \frac{\pi}{4}$

49. Answer (B, C)

Hint : If odds in favour of an event is p then its

probability is
$$\frac{p}{1+p}$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

...(i)

Solution : Let odds in favour of an event is p

then its probability is
$$\frac{p}{1+p}$$

 $p = 3q$

Probability of 1st event =
$$\frac{p}{1+p}$$

Probability
$$2^{nd}$$
 event = $\frac{q}{1+q}$

$$\frac{p}{1+p} = 2\left(\frac{q}{1+q}\right) \qquad \dots \text{(ii)}$$

From (i) and (ii) p = 0 or 1

Probability of 1st event = 0 or $\frac{1}{2}$

50. Answer (A, B, D)

Hint : Use binomial distribution

Solution : Probability of A winning the game

$$= {}^{3}C_{2} \cdot p^{2} (1-p) + {}^{3}C_{3} p^{3}$$
$$= p^{2} [3-2p]$$

Probability of B winning the game

$$= {}^{5}C_{3}p^{3}(1-p)^{2} + {}^{5}C_{4}p^{4}(1-p) + {}^{5}C_{5}p^{5}$$
$$= p^{3}[6p^{2} - 15p + 10]$$
Now, $p^{2}(3-2p) = p^{3}(6p^{2} - 15p + 10)$

$$\Rightarrow p=0, 1, \frac{1}{2}$$

51. Answer (A, B, C)

Hint:
$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{b} \cdot \vec{c}) - (\vec{a} \cdot \vec{b})\vec{c}$$

Solution :
$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$$

$$\Rightarrow (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{b} \cdot \vec{c}) \vec{a}$$

$$\Rightarrow (\vec{a} \cdot b)\vec{c} = (\vec{b} \cdot \vec{c})\vec{a}$$

So either \vec{a} and \vec{c} are collinear or

$$\vec{a}\cdot\vec{b}=\vec{b}\cdot\vec{c}=0$$

which means either \vec{b} is a null vector or \vec{b} is

perpendicular to both \vec{a} and \vec{c} .

52. Answer (A, C, D)
Hint:
$$|\lambda \vec{a} + \mu \vec{b}|^2 = 4\lambda^2 + \mu^2 + 2\lambda\mu$$

Solution: $|\lambda \vec{a} + \mu \vec{b}|^2 = \lambda^2 |\vec{a}|^2 + \mu^2 |\vec{b}|^2 + 2\lambda\mu \vec{a} \cdot \vec{b}$
 $= 4\lambda^2 + \mu^2 + 2\lambda\mu$
(A) $|\vec{a} - \vec{b}|^2 = 4 + 1 - 2 = 3 \Rightarrow |\vec{a} - \vec{b}| = \sqrt{3}$
(B) $|\vec{b} - \frac{1}{2}\vec{a}|^2 = 1 + 1 - 1 = 1 \Rightarrow |\vec{b} - \frac{1}{2}\vec{a}| = 1$
(C) $|\frac{3\vec{a} - 7\vec{b}}{2}|^2 = \frac{36 + 49 - 42}{4} = \frac{43}{4}$
 $\Rightarrow |3\vec{a} - 7\vec{b}| = \sqrt{\frac{43}{2}}$
(D) $|2\vec{a} - 5\vec{b}|^2 = 16 + 25 - 20 = 21$
 $|2\vec{a} - 5\vec{b}| = \sqrt{21}$

53. Answer (B, C, D)

Hint : Equation must be inconsistent and planes should be non parallel.

Solution :

$$\begin{vmatrix} 1 & k & 1 \\ 1 & 1 & k \\ 1 & -3 & 3 \end{vmatrix} = 0$$

$$\Rightarrow k = 1, -1$$

But $k \neq 1$ (The two planes will be parallel so triangular prism can't be formed).

54. Answer (B, C, D)

Hint : Assume points $B(\vec{b})$ and $D(\vec{d})$ then use scalar product.

Solution : Consider *A* as origin and position vectors of *B*, *D* and *C* as $\vec{b}, \vec{d}, \vec{b} + \vec{d}$ respectively.

Here
$$|\vec{b}| = x$$
 and $|\vec{d}| = y$
Also $|\vec{b} + \vec{d}| = z$
 $\Rightarrow x^2 + y^2 + 2\vec{b}\cdot\vec{d} = z^2$...(i)
 $\vec{B}\vec{D}\cdot\vec{D}\vec{A} = (\vec{d}-\vec{b})\cdot(-\vec{d})$
 $= -y^2 + \vec{b}\cdot\vec{d}$
 $= -y^2 + \frac{z^2 - x^2 - y^2}{2}$ (from (i))
 $= -\frac{1}{2}x^2 - \frac{3}{2}y^2 + \frac{1}{2}z^2$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 4A (Paper-1) (Code-A)_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2020

55. Answer (B, C, D)

Hint : Consider $\vec{c} = \lambda \vec{a} + \mu \vec{b}$

Solution :

 \therefore $\vec{a}, \vec{b}, \vec{c}$ are coplanar then

Let $\vec{c} = \lambda \vec{a} + \mu \vec{b}$

 $\vec{a} \cdot \vec{c} = \lambda \vec{a} \cdot \vec{a} + \mu \vec{a} \cdot \vec{b}$

$$-\frac{1}{2} = \lambda + \mu \cos \theta \qquad \dots (i)$$

Similarly $\vec{b} \cdot \vec{c} = \lambda \vec{a} \cdot \vec{b} + \mu \vec{b} \cdot \vec{b}$

$$\cos\left(\frac{2\pi}{3}-\theta\right) = \lambda\cos\theta + \mu$$
 ...(ii)

From (i) and (ii)

$$\lambda = -\frac{\sqrt{3}}{2}\cot\theta - \frac{1}{2} \text{ and } \mu = \frac{\sqrt{3}}{2}\csc\theta$$

So, $\overline{c} = -\left(\frac{\sqrt{3}\cot\theta + 1}{2}\right)\overline{a} + \left(\frac{\sqrt{3}}{2}\csc\theta\right)\overline{b}$

56. Answer (A, C, D)

Hint : Use Bayes theorem

Solution :Let events

 E_1 = Coins show 2 heads (die X is rolled) E_2 = Coins show 1 head (die Y is rolled) E_3 = Coins show no head (die Z is rolled) And A = Die shows red face.

$P(E_1) = \frac{1}{4}$	$P(E_2) = \frac{2}{4}$	$P(E_3) = \frac{1}{4}$
$P\left(\frac{A}{E_1}\right) = \frac{1}{6}$	$P\left(\frac{A}{E_2}\right) = \frac{3}{6}$	$P\left(\frac{A}{E_3}\right) = \frac{2}{6}$

$$P\left(\frac{E_{3}}{A}\right) = \frac{P(E_{3}) \cdot P\left(\frac{A}{E_{3}}\right)}{P(E_{1}) \cdot P\left(\frac{A}{E_{1}}\right) + P(E_{2}) \cdot P\left(\frac{A}{E_{2}}\right) + P(E_{3}) \cdot P\left(\frac{A}{E_{3}}\right)}$$
$$= \frac{\frac{1}{4} \cdot \frac{2}{6}}{\frac{1}{4} \cdot \frac{1}{6} + \frac{2}{4} \cdot \frac{3}{6} + \frac{1}{4} \cdot \frac{2}{6}}{\frac{1}{4} \cdot \frac{1}{6} + \frac{2}{4} \cdot \frac{3}{6} + \frac{1}{4} \cdot \frac{2}{6}}$$
$$= \frac{2}{1+6+2} = \frac{2}{9}$$

57. Answer (B, D)

Hint :
$$\therefore \frac{AD}{CD} = \frac{AB}{BC}$$

Solution :

$$\therefore \frac{AD}{CD} = \frac{AB}{BC} = \frac{3}{7}$$

Using section formula;

$$D\left(0,-\frac{1}{2},\frac{1}{2}\right)$$

(A) DR's of
$$BD \propto 2, -\frac{1}{2}, \frac{5}{2}$$
 or $4, -1, 5$

(B)
$$BD = \sqrt{4 + \frac{1}{4} + \frac{25}{4}} = \sqrt{\frac{21}{2}}$$

(C) Area of

$$\Delta ABD = \frac{1}{2} \left| \overrightarrow{BA} \times \overrightarrow{BD} \right| = \frac{1}{2} \left| -\frac{9}{2} \hat{i} - 3\hat{j} + 3\hat{k} \right|$$
$$= \frac{\sqrt{153}}{4}$$

(D) Area of

$$\Delta ABC = \frac{1}{2} \left| \overrightarrow{BA} \times \overrightarrow{BC} \right| = \frac{1}{2} \left| -15\hat{i} - 10\hat{j} + 10\hat{k} \right|$$
$$= \frac{5\sqrt{17}}{2}$$

58. Answer (A, C)

Hint : Probability of a selected number to be

even is
$$\frac{3}{7}$$
 and to be odd is $\frac{4}{7}$

Solution : (*A* and *B*) *abc* is even if at least one of *a*, *b* or *c* is even, so

Required probability =
$$1 - \left(\frac{4}{7}\right)^3$$

= $\frac{279}{7^3}$

(C) (ab + c) is even then,

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2020 Test - 4A (Paper-1) (Code-A)_(Hints & Solutions)

Case (1) : If *c* is even then at least one of *a* or *b* is even.

Case (2) : If *c* is odd then both *a* and *b* are odd Required probability

$$=\frac{3}{7}\left(1-\left(\frac{4}{7}\right)^{2}\right)+\left(\frac{4}{7}\right)^{3}=\frac{163}{7^{3}}$$

(B) (a + b + c) is even if all are even or anyone is even and remaining two are odd.

Required probability = $\left(\frac{3}{7}\right)^3 + {}^3C_1 \cdot \frac{3}{7} \left(\frac{4}{7}\right)^2 = \frac{171}{7^3}$

59. Answer A(T); B(Q); C(P, R); D(S)
Hint : Three faces of a triangular prism are parallelogram.
Solution :

(A) Let point B'(x, y, z)

- (B) Similarly C'(2, 4, 4)
- (C) Point of intersection of diagonals of face

$$AA'B'B$$
 is $\left(\frac{1}{2}, 1, \frac{5}{2}\right)$

Point of intersection of diagonals of face AA'C'C is (1, 2, 2)

Point of intersection of diagonals of face

$$BB'C'C \text{ is } \left(\frac{1}{2}, \frac{5}{2}, 3\right)$$

(D) D' is midpoint of B' and C', so

$$D'\left(\frac{3}{2},3,\frac{9}{2}\right)$$

60. Answer A(S, T); B(P, S); C(T); D(R, T)

Hint :
$$p(E) = \frac{n(E)}{n(S)}$$

Solution :

Total number in set $S = 5 \times 5 \times 4 \times 3 = 300$

(A) If number is divisible by 4, the last two digits will be 04, 12, 20, 24, 32, 40, or 52.

Total number of numbers = $12 \times 3 + 9 \times 4 = 72$

Required probability =
$$\frac{72}{300} = \frac{6}{25}$$

(B) There should be either only one odd digit or only even digit in the number.

Total such numbers = ${}^{3}C_{1} \cdot 3|3 + {}^{2}C_{1} \cdot |4 + 3|3$

Required probability = $\frac{120}{300} = \frac{2}{5}$

(C) There are only 5 combinations of 4 digits possible (1, 2, 4, 5); (0, 3, 4, 5); (0, 2, 3, 4); (0, 1, 3, 5) or (0, 1, 2, 3)

Number of numbers divisible by 6 using

$$(1, 2, 4, 5) = 12$$

Number of numbers divisible by 6 using

(0, 3, 4, 5) = 10

Number of numbers divisible by 6 using

(0, 2, 3, 4) = 14

Number of numbers divisible by 6 using

(0, 1, 3, 5) = 6

Number of numbers divisible by 6 using

(0, 1, 2, 3) = 10

Total numbers divisible by 6 = 52

Required probability =
$$\frac{52}{300} = \frac{13}{75}$$

(D) If abcd is divisible by 11 then

$$a + c = b + d$$

Total number of numbers divisible by 11 = 48

Required probability = $\frac{48}{300} = \frac{4}{25}$

All India Aakash Test Series for JEE (Advanced)-2020

TEST - 4A (Paper-1) - Code-B

Test Date : 24/11/2019

ANSWERS								
PHYSICS		CHEMISTRY		MATHEMATICS				
1.	(5)	21.	(6)	41.	(4)			
2.	(4)	22.	(5)	42.	(9)			
3.	(2)	23.	(3)	43.	(7)			
4.	(6)	24.	(4)	44.	(6)			
5.	(2)	25.	(3)	45.	(5)			
6.	(3)	26.	(8)	46.	(2)			
7.	(7)	27.	(5)	47.	(5)			
8.	(2)	28.	(1)	48.	(4)			
9.	(B, D)	29.	(A, B, C)	49.	(A, C)			
10.	(A, C)	30.	(C, D)	50.	(B, D)			
11.	(A, C)	31.	(C)	51.	(A, C, D)			
12.	(A, B)	32.	(A, B, C, D)	52.	(B, C, D)			
13.	(B, C, D)	33.	(A, C)	53.	(B, C, D)			
14.	(A, C, D)	34.	(C)	54.	(B, C, D)			
15.	(B, C)	35.	(B, D)	55.	(A, C, D)			
16.	(A, B, C)	36.	(A, B, D)	56.	(A, B, C)			
17.	(A, B, C)	37.	(A, B)	57.	(A, B, D)			
18.	(A, D)	38.	(A, B)	58.	(B, C)			
19.	$A \to (Q)$	39.	$A \to (P,Q,S)$	59.	$A \to (S,T)$			
	B ightarrow (S)		$B \rightarrow (P, R)$		$B \rightarrow (P, S)$			
	$C \rightarrow (P, R)$		$C \rightarrow (P, R, T)$		$C \rightarrow (T)$			
	$D \rightarrow (T)$		$D \rightarrow (R)$		$D \rightarrow (R, T)$			
20.	$A \rightarrow (Q)$	40.	$A \rightarrow (P, R)$	60.	$A \rightarrow (T)$			
	$B \rightarrow (S)$		$B \rightarrow (Q)$		$B \rightarrow (Q)$			
	$C \rightarrow (R, T)$		$C \rightarrow (Q, S, T)$		$C \rightarrow (P, R)$			
	$D \rightarrow (P)$		$D \rightarrow (Q)$		$D \rightarrow (S)$			

HINTS & SOLUTIONS

PART - I (PHYSICS)

1. Answer (5)

Hint :

Minima will be at the position where path differences are 4.5λ , 3.5λ , 2.5λ , 1.5λ , 0.5λ . **Solution :**

Minima will be at those points where path differences are 4.5 λ , 3.5 λ , 2.5 λ , 1.5 λ and 0.5 λ So five minima are observed.

2. Answer (4)

Hint : ΔE (for reaction) = 4(7.30 MeV) -3(2.40 MeV) -2(1.00 MeV)

Solution :

 $\Delta E(\text{for reaction}) = [4(7.30) - 3(2.40) - 2(1.0)]\text{MeV}$ $\Rightarrow \Delta E = 20 \text{ MeV}$

 $\Rightarrow \frac{1}{5}$ th of this energy will be taken away by

helium and rest are for neutron.

3. Answer (2)

Hint :
$$d\sin\theta = \frac{\lambda}{2}$$
 |for 1st minima $\theta = 0.75^{\circ}$ |

Solution :

For first minima $\theta = 0.75^{\circ}$

$$\therefore \quad d = \frac{\lambda}{2\sin(0.75^\circ)} = 1.98 \times 10^{-5} \text{ m}$$

$$\Rightarrow d \approx 2 \times 10^{-2} \text{ mm}$$

4. Answer (6)

Hint : $\Delta E_0 \left| 1 - \frac{1}{n^2} \right| = \Delta E$

Solution :

 $\Delta E = 30 \text{ eV}$ 42.5% of 30 eV = 12.75 eV

$$13.6 \left| 1 - \frac{1}{n^2} \right| = 12.75$$

So we get n = 4 (is the energy level to which hydrogen gets excited) So, number of wavelengths = 6

5. Answer (2)

Hint : $d \sin \theta = (2\mu t + t) - 2\mu t$ Solution : $d \sin \theta = (2\mu t + t) - 2\mu t$ $\Rightarrow d \frac{y}{D} = t \Rightarrow \qquad y = \frac{Dt}{d}$

$$\Rightarrow y = \frac{1 \times 2 \times 10^{-5}}{1 \times 10^{-3}} = 2 \times 10^{-2} \mathrm{m}$$

6. Answer (3)

Hint : $mv_0 = 2mv \cos 30^\circ$; $\frac{1}{2}mv_0^2 = x \left\lfloor \frac{3}{4} \Delta E_0 \right\rfloor$

Solution :

Let the final speed of (both) the H-atom and neutron is *v* then, $mv_0 = 2mv \cos 30^\circ$

$$\Rightarrow v = \frac{v_0}{\sqrt{3}}$$
Also, $\frac{1}{2}mv_0^2 = \frac{1}{2} \cdot 2m \cdot \frac{v_0^2}{3} + \frac{3}{4}\Delta E_0$

$$\therefore \frac{1}{2}mv_0^2 \left(1 - \frac{2}{3}\right) = \frac{3}{4}\Delta E_0$$

$$\Rightarrow \frac{1}{2}mv_0^2 = \frac{9}{4}\Delta E_0$$

$$\therefore \frac{1}{2}mv_0^2 = x\left(\frac{3}{4}\Delta E_0\right)$$

$$\therefore x\left[\frac{3}{4}\Delta E_0\right] = \frac{9}{4}\Delta E_0$$

 $\therefore x = 3$ 7. Answer (7)

Hint :
$$A_R^2 = A_1^2 + A_2^2 + 2A_1A_2 \cos \phi$$

Solution :

Let the amplitude of wave through S_1 and S_2 be A. So, if $A^2 = I_0$

Then
$$4A^2 = I \implies A^2 = \frac{I}{4}$$

After passing through P1 amplitude would be A

and after passing through P_2 amplitude would be $\frac{A}{2}$

$$\Delta x = (\mu_1 t - \mu_2 t) = 0.5 \times 40 \times 10^{-6}$$

$$\therefore \quad \Delta \phi = \frac{1}{2} \times 40 \times 10^{-6} \times \frac{2\pi}{4000} \times 10^{10} = 50 \times 2\pi$$

So, construction interference would occur at O

$$\therefore \quad A_{\text{result}} = A + \frac{A}{2} = \frac{3A}{2}$$

and $I' = \frac{9}{4}A^2 = \frac{9}{4} \cdot \frac{I}{4} = \left(\frac{9}{16}\right)I$
$$\therefore \quad x = 9, y = 16$$

$$\Rightarrow \quad y - x = 7$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 4A (Paper-1) (Code-B)_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2020

8. Answer (2)
Hint :
$$\frac{hc}{\chi_{\min}} = \Delta E - \phi$$

Solution :
 $\frac{\lambda_{H_2}}{\lambda_{gas}} = \frac{\sqrt{2m(\frac{3}{4}z^2\Delta E_0 - \phi)}}{\sqrt{2m(\frac{3}{4}\Delta E_0 - \phi)}}$
 $\Rightarrow \frac{\frac{3}{4}\Delta E_0 z^2 - \phi}{\frac{3}{4}\Delta E_0 - \phi} = \frac{61}{10} \qquad ...(i)$
Also, $\frac{3}{4}\Delta E_0 z^2 - \frac{\Delta E_0 z^2}{4} = 2\Delta E_0$
 $\Rightarrow \frac{\Delta E_0 z^2}{2} = 2\Delta E_0 \qquad \therefore z = 2$
Now in equation (i)
 $10(3\Delta E_0 - \phi) = 61(\frac{3}{4}\Delta E_0 - \phi)$
 $\Rightarrow 30\Delta E_0 - 10\phi = \frac{183}{4}\Delta E_0 - 61\phi$
 $\Rightarrow 51\phi = \frac{63}{4}\Delta E_0$
 $\Rightarrow \phi = \frac{63 \times 13.6}{4 \times 51} eV = \frac{21 \times 2}{10} eV$
 $\therefore K = 2$
9. Answer (B, D)
Hint : $N = N_0 e^{-\lambda t}$

Solution :

Let N₀ be the number of active nuclei at 6 : 10 AM in 1 mL of dose.

2

- **\$**

Then at 8 : 00 AM, number of active nuclei becomes $\frac{N_0}{2}$ in 1 mL. So effectively $\frac{N_0}{2}$ no. of nuclei is to be administrated.

$$\Rightarrow (1 \,\mathrm{mL}) \cdot \frac{N_0}{2} = \mathrm{constant}$$

At 7 : 05 AM let N_1 be the active nuclei then

$$N_{1} = \frac{N_{0}}{\frac{\ln 2 \times 55}{e^{\frac{1}{10}}}} = \frac{N_{0}}{\sqrt{2}}$$

So $x \cdot \frac{N_{0}}{\sqrt{2}} = (1 \text{ mL}) \frac{N_{0}}{2}$
 $\Rightarrow x = \left(\frac{1}{\sqrt{2}}\right) \text{ mL}$
At 9 : 50 $N_{3} = \frac{N_{0}}{4}$ And at 8 : 55 AM. $N_{2} = \frac{N_{0}}{2\sqrt{2}}$

$$\therefore \frac{(1 \text{ mL})\frac{N}{2}}{\text{At 8:00 AM}} = \frac{(\sqrt{2} \text{ mL})\frac{N_0}{2\sqrt{2}}}{\text{At 8:55 AM}} = \frac{(2 \text{ mL})\left(\frac{N_0}{4}\right)}{\text{At 9:00 AM}}$$
10. Answer (A, C)
Hint: $\frac{hc}{\lambda} = \Delta E_0 (Z-1)^2 \cdot \frac{3}{4}$ (for K_α lines)
Solution:
 $\frac{hc}{\lambda_z} = \Delta E_0 (Z-1)^2 \cdot \frac{3}{4}$
 $\frac{hc}{\lambda_z} = \Delta E_0 (Z-1)^2 \cdot \frac{3}{4}$
 $\frac{hc}{\lambda_z} = \Delta E_0 (Z_2 - 1)^2 \cdot \frac{3}{4}$
 $\therefore \frac{\lambda_z}{\lambda_1} = 4 = \frac{(Z_1 - 1)^2}{(Z-1)^2}$
 $\Rightarrow \frac{Z_1 - 1}{Z-1} = 2$
 $\therefore Z_1 = 2Z - 1$
Similarly, $\frac{\lambda_z}{\lambda_2} = \frac{(Z_2 - 1)^2}{(Z-1)^2} = \frac{1}{4}$
 $\Rightarrow \frac{Z_2 - 1}{Z-1} = \frac{1}{2}$
 $\Rightarrow Z_2 = \frac{Z+1}{2}$
11. Answer (A, C)
Hint : Least count $= \left(\frac{1}{50}\right)$ mm.
Solution :
Least count $= \frac{1}{50}$ mm = 0.02 mm
Reading = (1 mm x 18) + 0.02 x 20
 $= 18.4$ mm
12. Answer (A, B)
Hint:
 $R_n = R_0 (n^2)$
 $\therefore A_n = 4\pi R_0^2 \cdot n^4$
Solution :
 $R_n = R_0 n^2$
 $\therefore A_n = 4\pi R_0^2 \cdot n^4$
And $A_1 = 4\pi R_0^2$

Straight line of slope 4 and pass through origin.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2020 Test - 4A (Paper-1) (Code-B)_(Hints & Solutions)

Hint : Will be shifted upward by $\frac{d^2}{4\lambda D}$

Solution :

$$\Delta S_3 S_1 S_2 \equiv \Delta P S_2 S_1$$

- $\therefore \quad S_0 S_3 = OP$
- \Rightarrow shifting $\Delta y = \frac{d}{4}$
- \therefore Fringe width will remain same as $\frac{\lambda D}{d}$
- ... Number of fringe crossing through O is

$$N = \frac{d.d}{4\lambda D} = \frac{d^2}{4\lambda D}$$

14. Answer (A, C, D)

Hint :
$$\lambda = \frac{n}{P}$$

Solution :

$$2m6(\hat{i}+2\hat{j})=P_{B}$$

$$\therefore \quad \lambda = \frac{h}{12m\sqrt{5}}$$

$$\Rightarrow \quad \frac{h}{m} = 12\sqrt{5} \lambda$$

$$P_A = 2m(\hat{i} + 2\hat{j}) = 2m\sqrt{5}$$

$$\therefore \quad \lambda_A = \frac{h}{2\sqrt{5}m} = \frac{12\sqrt{5}\lambda}{2\sqrt{5}} = 6\lambda$$

$$v_0 = \frac{m(2\hat{i} + 4\hat{j}) + 2m(6\hat{i} + 12\hat{j})}{3m} = \frac{14m\hat{i} + 28m\hat{j}}{3m}$$

$$P_{cm} = 3mv_0 = 14m(\hat{i} + 2\hat{j})$$

$$\Rightarrow \quad \lambda_{cm} = \frac{h}{P_{cm}} = \frac{h}{14\sqrt{5}m} = \frac{12\sqrt{5}\lambda}{14\sqrt{5}} = \frac{6}{7}\lambda$$

$$Now, \quad \vec{v}_{AC} = \vec{v}_{Aqr} - \vec{v}_{cqr} = 2\hat{i} + 4\hat{j} - \frac{14}{3}\hat{i} - \frac{28}{3}\hat{j}$$

$$\vec{v}_{AC} = \frac{-8}{3}\hat{i} - \frac{16}{3}\hat{j} = \frac{-8}{3}(\hat{i} + 2\hat{j})$$

$$\therefore \quad \left|\vec{P}_{AC}\right| = \frac{8m}{3}\sqrt{5}$$

$$\vec{\lambda}_{AC} = \frac{h}{(P_{AC})} = \frac{h \times 3}{8\sqrt{5}m} = \frac{3}{8\sqrt{5}} \times 12\sqrt{5} \lambda$$
$$\vec{\lambda}_{AC} = \frac{9}{2} \lambda$$

15. Answer (B, C)
Hint :
$$\Delta w = \frac{\lambda D}{d}$$

Solution :

Fringe width $\Delta w = \frac{\lambda D}{d}$

So if λ increases then fringe width also increases. 16. Answer (A, B ,C)

Hint :
$$\frac{hc}{\lambda} = \Delta E_0 Z^2 \left(\frac{1}{n^2} - \frac{1}{m^2} \right)$$

Solution :

$$\frac{hc}{\lambda_B} = \Delta E_0 Z^2 \left(\frac{1}{4} - \frac{1}{9}\right) = \frac{5}{36} \Delta E_0 Z^2$$
$$\therefore \quad \lambda_B = \frac{hc}{\Delta E_0 Z^2} \frac{36}{5}$$
$$\lambda_L = \frac{hc}{\Delta E_0 Z^2}$$
$$\therefore \quad \lambda_B - \lambda_L = \Delta \lambda = \frac{hc}{\Delta E_0 Z^2} \cdot \frac{31}{5}$$
$$\Rightarrow \quad \frac{5}{31} \Delta \lambda = \left(\frac{hc}{\Delta E_0 Z^2}\right)$$
$$\therefore \quad \Delta E_0 = Rch$$
$$\therefore \quad \frac{5}{31} \Delta \lambda \cdot Rhc = \frac{hc}{Z^2}$$

Shortest wavelength of Balmer series

$$\frac{hc}{\lambda'_{B}} = \frac{\Delta E_{0}Z^{2}}{4}$$

$$\Rightarrow \quad \lambda'_{B} = 4 \left[\frac{hc}{\Delta E_{0}Z^{2}}\right]$$

$$\Rightarrow \quad \lambda'_{B} = 4 \left[\frac{5}{31}\Delta\lambda\right] = \frac{20\Delta\lambda}{31}$$

31

 $5\Delta\lambda \cdot Z^2$

R =

 \Rightarrow

And longest wavelength of Lyman series

$$\frac{hc}{\lambda'_{L}} = \Delta E_{0}Z^{2}\left(1 - \frac{1}{4}\right) = \frac{3}{4}\Delta E_{0}Z^{2}$$
$$\Rightarrow \quad \lambda'_{L} = \frac{4}{3}\left(\frac{hc}{\Delta E_{0}Z^{2}}\right) = \frac{4}{3} \cdot \frac{5}{31}\Delta\lambda$$
$$\Rightarrow \quad \lambda'_{L} = \frac{20}{93}\Delta\lambda$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 4A (Paper-1) (Code-B)_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2020

17. Answer (A, B, C)

Hint :

The least count of the vernier caliper is the difference of the smallest unit on vernier scale and main scale.

Solution :

The least count of the vernier caliper is the difference of the smallest unit on vernier scale and main scale.

18. Answer (A, D)

Hint : Effective optical path difference :

 $\mu_2 t_2 - \mu_1 t_1 + (t_1 - t_2)$

Solution :

If $t_1 > t_2$

Then phase lead by wave from S₂

$$\left[\mu_{2}t_{2} + (t_{1} - t_{2}) - \mu_{1}t_{1} \right]$$

So f ring will shift towards S_2 to counter that much extra lead of phase.

19. Answer A(Q); B(S); C(P, R); D(T)

Hint : Fringe width $\Delta w = \frac{\lambda D}{d}$

Position of minima
$$(2n+1)\frac{\lambda D}{2d}$$

Solution :

(A) If at S_3 and S_4 there is destructive interference then final intensity on second screen is zero

$$\therefore \quad d_1 = d_2 = (2n+1)\frac{\lambda D}{2d}$$

(B) If $d_1 = \frac{3\lambda D}{2d}$ then destructive interference at

 S_3 and if $d_4 = \frac{\lambda D}{3d}$ then resulting intensity at

 S_4 is I_0 . So final intensity at screen 2, is I_0 .

(C) If $d_1 = d_2 = \frac{\lambda D}{3d}$ then resulting intensity at S_3 and S_4 are l_0 and final intensity at screen 2 is

4*l*₀. Also if $d_1 = \frac{\lambda D}{2d}$ then intensity at S₃ is zero

- and for $d_2 = \frac{\lambda D}{d}$ the intensity at S_4 is $4I_0$. So final intensity at screen 2 is $4I_0$.
- (D) If constructive interference happens at S_3 and S_4 then find intensity at screen 2 is $16I_0$.

Answer A(Q); B(S); C(R, T); D(P)
 Hint : Apply Bohr's model.
 Solution :

$$\frac{mV^2}{r} = \frac{kZe^2}{r^2}$$

$$mvr = \frac{nn}{2\pi}$$

$$r_n \propto \frac{n^2}{Z}$$

$$V_n \propto \frac{Z}{n}$$

$$T = \frac{2\pi r_n}{V_n}$$

$$T \propto \frac{n^3}{Z^2}$$

$$i = \frac{e}{T} = \frac{Z^2}{n^3}$$

$$B \propto \frac{i}{r} = \frac{Z^2Z}{n^3 n^2} = \frac{Z^3}{n^5}$$

PART - II (CHEMISTRY)

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2020 Test - 4A (Paper-1) (Code-B)_(Hints & Solutions)

Solution :

Nucleophilic substitution takes place via $S_{\mbox{\scriptsize N}}2$

23. Answer (3)

Hint :

Solution :

$$(C_2H_5)_4$$
 NOH $\xrightarrow{\Lambda}$ $(C_2H_5)_3$ N + C_2H_4
N - H $\xrightarrow{HNO_3}$ N \rightarrow NO

Reactions A, D and E are correct.

24. Answer (4)

Hint :

Each — CHO can produce an oxime.

25. Answer (3)

Hint : Isoelectric point is the pH when an amino acid exist in zwitterionic form and shows no net migration towards any electrode.

Solution :

$$pI = \frac{pK_{a_1} + pK_{a_2}}{2}$$
$$= \frac{2+4}{2} = 3$$

 $=\frac{2+1}{2}=3$

26. Answer (8)

Hint :

2Ph — CHO + KCN
$$\longrightarrow$$
 Ph — CH — C — Ph
 \downarrow
OH
(Benzoin condensation)

Ph - CHO + Zn + CH₂ - COOC₂H₈
Br
$$\downarrow$$

Ph - CH - CH₂ - COOC₄H₈
OH \downarrow H₂O'/ Δ
Ph - CH = CH - COOH

Solution :

Difference in molar mass, M = 64; $\frac{M}{8} = 8$

27. Answer (5)

Solution :

A and B are non-aromatic compounds Statements P, Q, R, U and V are incorrect.

28. Answer (1)

Grignard reagent will not interact with product.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 4A (Paper-1) (Code-B)_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2020

29. Answer (A, B, C)

Hint : The amines which can show optical activity, are resolvable.

Solution :

Amines which are bonded with four bulky groups and cyclic amines cannot undergo inversion.

30. Answer (C, D)

Hint : Correct order for basic strength is C > A > D > B

Solution :

More is the availability of lone pair of e^- on N-atom, greater would be the basic strength.

31. Answer (C)

Hint :

All given species can give yellow ppt with 2, 4-DNP.

Solution :

Only can give yellow ppt with I_2 in NaOH.

32. Answer (A, B, C, D)

Hint : During Hoffmann bromamide degradation stereochemistry of migrating group does not change.

Solution :

33. Answer (A, C)

Hint : Histamine is not an antacid. It stimulates the secretion of acid in stomach.

Solution :

Brompheniramine is an antihistaminics

34. Answer (C)

Polymer will yield upon ozonolysis

Solution :

Monomer of the polymer is

35. Answer (B, D) Hint :

Hemiacetal forms are

are reducing in nature. **Solution :**

Both C_1 and C_2 are having hemiacetal that's why both are reducing.

36. Answer (A, B, D)

Solution :

Ether do not undergo oxidation and in alkaline medium there is no hydrolysis that can occur on ether linkage.

37. Answer (A, B)

Hint : PCI_5 cause substitution of —OH by — CI group.

Solution :

38. Answer (A, B)

Hint : Ethers have lower boiling point than alcohols as there is hydrogen bonding involved in between two alcohol molecule.

Solution :

Compounds with multiple hydroxy functional group are having greater boiling point than mono hydroxy compound.

39. Answer A(P, Q, S); B(P, R); C(P, R, T); D(R)

Hint : Cellulose has β-links

Starch has α-links

Solution :

Sucrose upon hydrolysis gives α -D-glucose and β -D-fructose.

Maltose gives only α -D-glucose.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2020 Test - 4A (Paper-1) (Code-B)_(Hints & Solutions)

40. Answer A(P, R); B(Q); C(Q, S, T); D(Q)
Hint : Gauche and anti-form are diastereomers of each other.
Solution :

Pure enantiomer

Pure enantiomer

Mixture of E and Z isomer

PART - III (MATHEMATICS)

41. Answer (4)

Hint : Angle between two lines =
$$\frac{\overline{b}_1 \cdot \overline{b}_2}{|\overline{b}_1||\overline{b}_2|}$$

(where b_1 and b_2 are the vectors along the lines) Solution :

$$\cos \alpha = \frac{a(\sin \theta - 2) + b\sqrt{5}\cos \theta + (2\sin \theta + 1)}{\sqrt{(\sin \theta - 2)^2 + 5\cos^2 \theta + (2\sin \theta + 1)^2}\sqrt{a^2 + b^2 + 1^2}}$$
$$\Rightarrow \cos \alpha = \frac{\sin \theta(a+2) + b\sqrt{5}\cos \theta - 2a + 1}{\sqrt{10}\sqrt{a^2 + b^2 + 1}}$$

 \therefore α is independent of θ , then a + 2 = 0 and b = 0

$$\Rightarrow \cos \alpha = \frac{5}{\sqrt{10}\sqrt{5}} = \frac{1}{\sqrt{2}}$$
$$\Rightarrow \alpha = \frac{\pi}{4}$$

42. Answer (9)

Hint : Use formula for division into groups.

Solution : Total number of ways of forming groups = $\frac{\underline{|8|}}{(\underline{|2|})^4 \cdot \underline{|4|}} \cdot \frac{\underline{|4|}}{(\underline{|2|})^2 \cdot \underline{|2|}}$. If 5th ranked player is in the final, then he played a match against a higher ranked player in second round.

So in first round 5th ranked player played a match against 6th, 7th or 8th ranked player and remaining two of these played against each other.

Number of favourable ways for round one

$$= {}^{3}C_{1} \cdot 1 \cdot \frac{|\underline{4}|}{\left(|\underline{2}|^{2}|\underline{2}|\right)}$$

And number of favourable ways for round two = 1

Required probability
$$= \frac{{}^{3}C_{1} \cdot \frac{\underline{|4|}{(\underline{|2|}^{2}\underline{|2|} \times 1}}{\frac{\underline{|8|}}{(\underline{|2|}^{4}\underline{|4|} \cdot \frac{\underline{|4|}}{(\underline{|2|}^{2}\underline{|2|} \times 1)}}$$
$$= \frac{1}{35}$$

Number of divisors of 36 will be 9.

43. Answer (7)

Hint : Count cases when number of letters between *A* and *E* are 0, 1 or 2

There are 6 cases when number of letters between A and E (or A and I) is zero.

There are 4 cases when number of letters between A and E (or A and I) is one.

There are 2 cases when number of letters between A and E (or A and I) is two.

So, favourable words = $(|2 \times |5)$

Required probability =
$$\frac{12 \lfloor 2 \rfloor 5}{\lfloor 8 \rfloor}$$

$$\Rightarrow \frac{1}{2P} = 7$$

44. Answer (6)

Hint :
$$P(A \cap B) = P(A) \cdot P(B)$$

Solution : $P(A \cap B) = P(A) \cdot P(B)$
 $\Rightarrow P(A) = \frac{1}{5}$
 $(\overline{A}) P(\overline{A} \cap (A \cup B))$

Now,
$$P\left(\frac{A}{A \cup B}\right) = \frac{P(A \cup B)}{P(A \cup B)}$$

 $\Rightarrow P\left(\frac{\overline{A}}{A \cup B}\right) = \frac{P(B) - P(A \cap B)}{P(A \cap B)} = \frac{\frac{1}{2} - \frac{1}{10}}{\frac{1}{2} - \frac{1}{10}} = \frac{2}{2}$

$$\Rightarrow P\left(\frac{A}{A \cup B}\right) = \frac{P(B) P(A + B)}{\frac{1}{5} + \frac{1}{2} - \frac{1}{10}} = \frac{2 - 10}{\frac{6}{10}} = \frac{2}{3}$$

So, $9P\left(\frac{\overline{A}}{A \cup B}\right) = 6$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 4A (Paper-1) (Code-B)_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2020

45. Answer (5)

Hint : Both the lines are parallel

Solution: 2x - 2y + z - 9 = 0 = x + 2y + 2z + 12is line of intersection of planes $P_1 : 2x - 2y + z - 9 = 0$ and $P_2 : x + 2y + 2z + 12 = 0$.

Another line $L: \frac{x}{2} = \frac{y}{1} = \frac{z}{-2}$ is parallel to both planes P_1 and P_2 .

Distance between *L* and $P_1 = \left| \frac{9}{\sqrt{4+4+1}} \right| = 3$

and distance between *L* and $P_2 = \left| \frac{12}{\sqrt{4+4+1}} \right| = 4$

then distance between the two lines

$$=\sqrt{3^2+4^2}=5$$

46. Answer (2)

Hint : One angle of rhombus is $\frac{\pi}{2}$

Solution : Angle between two given lines;

$$\cos \theta = \frac{1}{\sqrt{2} \cdot \sqrt{2}} = \frac{1}{2}$$
$$\theta = \frac{\pi}{3}$$

Area of rhombus = $2\sqrt{3}$

Also,
$$\frac{2}{l_1} = \frac{1}{\sqrt{3}}$$

So $l_1 = \sqrt{3}$ and $l_2 = 1$

Side length of rhombus $=\sqrt{l_1^2 + l_2^2} = 2$

47. Answer (5)

Hint :Slope of normal is 2.

Solution : $xy^2 = 8$

$$\Rightarrow \frac{dy}{dx_{(2,2)}} = -\frac{1}{2}$$

Slope of normal = 2

So, unit vector along normal $=\frac{i+2j}{\sqrt{5}}=\vec{x}$

Length of projection $= \left| \frac{3-8}{\sqrt{5}} \right| = \sqrt{5}$

48. Answer (4)

Hint : Fundamental principle of counting. **Solution :** Total combinations of *a*, *b*, *c* and $d = 6^4$ (a - 3), (b - 4), (c - 5) and (d - 6) are integers. Their product is 1 then

- (i) All of them should be 1 (Not possible as $d \neq 7$)
- (ii) All of them should be −1 (one case *a* = 2, *b* = 3,
 c = 4, *d* = 5)
- (iii)Two of them are 1 and remaining two are -1(three cases)

Total favourable cases = 4

Required probability = $\frac{4}{6^4}$

49. Answer (A, C)

Hint : Probability of a selected number to be

even is
$$\frac{3}{7}$$
 and to be odd is $\frac{4}{7}$

Solution : (*A* and *B*) *abc* is even if at least one of *a*, *b* or *c* is even, so

Required probability = $1 - \left(\frac{4}{7}\right)^3$

$$=\frac{279}{7^3}$$

(C) (ab + c) is even then,

Case (1) : If *c* is even then at least one of *a* or *b* is even.

Case (2) : If *c* is odd then both *a* and *b* are odd Required probability

$$=\frac{3}{7}\left(1-\left(\frac{4}{7}\right)^{2}\right)+\left(\frac{4}{7}\right)^{3}=\frac{163}{7^{3}}$$

(B) (a + b + c) is even if all are even or anyone is even and remaining two are odd.

Required probability =
$$\left(\frac{3}{7}\right)^3 + {}^3C_1 \cdot \frac{3}{7}\left(\frac{4}{7}\right)^2 = \frac{171}{7^3}$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

...(i)

...(ii)

50. Answer (B, D)

Hint :
$$\therefore \frac{AD}{CD} = \frac{AB}{BC}$$

A (0, 1, 2)

$$A (0, 1, 2)$$

 $B (2, -1, 3)$
 T
 $C (0, -4, -3)$
 $3:7$

 $\therefore \frac{AD}{CD} = \frac{AB}{BC} = \frac{3}{7}$

Using section formula;

$$D\left(0,-\frac{1}{2},\frac{1}{2}\right)$$

(A) DR's of
$$BD \propto 2, -\frac{1}{2}, \frac{5}{2}$$
 or $4, -1, 5$

(B)
$$BD = \sqrt{4 + \frac{1}{4} + \frac{25}{4}} = \sqrt{\frac{21}{2}}$$

4

(C) Area of

$$\Delta ABD = \frac{1}{2} \left| \overrightarrow{BA} \times \overrightarrow{BD} \right| = \frac{1}{2} \left| -\frac{9}{2} \hat{i} - 3\hat{j} + 3\hat{k} \right|$$
$$-\sqrt{153}$$

(A) Area of

$$\Delta ABC = \frac{1}{2} \left| \overrightarrow{BA} \times \overrightarrow{BC} \right| = \frac{1}{2} \left| -15\hat{i} - 10\hat{j} + 10\hat{k} \right|$$
$$= \frac{5\sqrt{17}}{2}$$

51. Answer (A, C, D) Hint : Use Bayes theorem Solution :Let events E_1 = Coins show 2 heads (die X is rolled)

- E_2 = Coins show 1 head (die Y is rolled) E_3 = Coins show no head (die Z is rolled)
- And A = Die shows red face.

$$P(E_{1}) = \frac{1}{4} \qquad P(E_{2}) = \frac{2}{4} \qquad P(E_{3}) = \frac{1}{4}$$
$$P\left(\frac{A}{E_{1}}\right) = \frac{1}{6} \qquad P\left(\frac{A}{E_{2}}\right) = \frac{3}{6} \qquad P\left(\frac{A}{E_{3}}\right) = \frac{2}{6}$$

$$P\left(\frac{E_{3}}{A}\right) = \frac{P(E_{3}) \cdot P\left(\frac{A}{E_{3}}\right)}{P(E_{1}) \cdot P\left(\frac{A}{E_{1}}\right) + P(E_{2}) \cdot P\left(\frac{A}{E_{2}}\right) + P(E_{3}) \cdot P\left(\frac{A}{E_{3}}\right)}$$

$$= \frac{\frac{1}{4} \cdot \frac{2}{6}}{\frac{1}{4} \cdot \frac{1}{6} + \frac{2}{4} \cdot \frac{3}{6} + \frac{1}{4} \cdot \frac{2}{6}}$$

$$= \frac{2}{1 + 6 + 2} = \frac{2}{9}$$
52. Answer (B, C, D)
Hint : Consider $\vec{c} = \lambda \vec{a} + \mu \vec{b}$
Solution :
 $\therefore \quad \vec{a}, \vec{b}, \vec{c}$ are coplanar then

$$C\left(\vec{c}\right) \underbrace{2\pi - \theta}_{A} \left(\vec{a}\right)$$
Let $\vec{c} = \lambda \vec{a} + \mu \vec{b}$
 $\vec{a} \cdot \vec{c} = \lambda \vec{a} \cdot \vec{a} + \mu \vec{a} \cdot \vec{b}$
 $-\frac{1}{2} = \lambda + \mu \cos \theta$...(i)
Similarly $\vec{b} \cdot \vec{c} = \lambda \vec{a} \cdot \vec{b} + \mu \vec{b} \cdot \vec{b}$
 $\cos\left(\frac{2\pi}{3} - \theta\right) = \lambda \cos \theta + \mu$...(ii)
From (i) and (ii)
 $\lambda = -\frac{\sqrt{3}}{2} \cot \theta - \frac{1}{2}$ and $\mu = \frac{\sqrt{3}}{2} \csc \theta$
So, $\vec{c} = -\left(\frac{\sqrt{3} \cot \theta + 1}{2}\right)\vec{a} + \left(\frac{\sqrt{3}}{2} \csc \theta\right)\vec{b}$
53. Answer (B, C, D)

53

Hint : Assume points B(b) and D(a) then use scalar product.

Solution : Consider A as origin and position vectors of *B*, *D* and *C* as \vec{b} , \vec{d} , $\vec{b} + \vec{d}$ respectively.

Here
$$|\vec{b}| = x$$
 and $|\vec{d}| = y$
Also $|\vec{b} + \vec{d}| = z$
 $\Rightarrow x^2 + y^2 + 2\vec{b}\cdot\vec{d} = z^2$...(i)
 $\overrightarrow{BD}\cdot\overrightarrow{DA} = (\vec{d}-\vec{b})\cdot(-\vec{d})$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

b

$$= -y^{2} + b \cdot d$$

= $-y^{2} + \frac{z^{2} - x^{2} - y^{2}}{2}$ (from (i))
= $-\frac{1}{2}x^{2} - \frac{3}{2}y^{2} + \frac{1}{2}z^{2}$

54. Answer (B, C, D)

Hint : Equation must be inconsistent and planes should be non parallel.

Solution :

 $\begin{vmatrix} 1 & k & 1 \\ 1 & 1 & k \\ 1 & -3 & 3 \end{vmatrix} = 0$ $\Rightarrow k = 1, -1$

But $k \neq 1$ (The two planes will be parallel so triangular prism can't be formed).

55. Answer (A, C, D)

Hint :
$$|\lambda \vec{a} + \mu \vec{b}|^2 = 4\lambda^2 + \mu^2 + 2\lambda\mu$$

Solution : $|\lambda \vec{a} + \mu \vec{b}|^2 = \lambda^2 |\vec{a}|^2 + \mu^2 |\vec{b}|^2 + 2\lambda\mu \vec{a} \cdot \vec{a}$
 $= 4\lambda^2 + \mu^2 + 2\lambda\mu$
(A) $|\vec{a} - \vec{b}|^2 = 4 + 1 - 2 = 3 \Rightarrow |\vec{a} - \vec{b}| = \sqrt{3}$
(B) $|\vec{b} - \frac{1}{2}\vec{a}|^2 = 1 + 1 - 1 = 1 \Rightarrow |\vec{b} - \frac{1}{2}\vec{a}| = 1$
(C) $\left|\frac{3\vec{a} - 7\vec{b}}{2}\right|^2 = \frac{36 + 49 - 42}{4} = \frac{43}{4}$
 $\Rightarrow |3\vec{a} - 7\vec{b}| = \sqrt{\frac{43}{2}}$
(D) $|2\vec{a} - 5\vec{b}|^2 = 16 + 25 - 20 = 21$
 $|2\vec{a} - 5\vec{b}| = \sqrt{21}$
56. Answer (A, B, C)

Hint: $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{b} \cdot \vec{c}) - (\vec{a} \cdot \vec{b})\vec{c}$

Solution :
$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$$

$$\Rightarrow (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{b} \cdot \vec{c}) \vec{a}$$

$$\Rightarrow (\vec{a} \cdot b)\vec{c} = (\vec{b} \cdot \vec{c})\vec{a}$$

So either \vec{a} and \vec{c} are collinear or

$$\vec{a}\cdot\vec{b}=\vec{b}\cdot\vec{c}=0$$

which means either \vec{b} is a null vector or \vec{b} is

perpendicular to both \vec{a} and \vec{c} .

57. Answer (A, B, D)

Hint : Use binomial distribution

Solution : Probability of A winning the game

$$= {}^{3}C_{2} \cdot p^{2} (1-p) + {}^{3}C_{3} p^{3}$$

$$= p^2 [3 - 2p]$$

Probability of *B* winning the game

$$= {}^{5}C_{3}p^{3}(1-p)^{2} + {}^{5}C_{4}p^{4}(1-p) + {}^{5}C_{5}p^{5}$$
$$= p^{3}[6p^{2} - 15p + 10]$$
Now, $p^{2}(3-2p) = p^{3}(6p^{2} - 15p + 10)$

$$\Rightarrow p=0, 1, \frac{1}{2}$$

58. Answer (B, C)

Hint : If odds in favour of an event is p then its

probability is
$$\frac{p}{1+p}$$

Solution : Let odds in favour of an event is p

then its probability is
$$\frac{p}{1+p}$$

...(i)

Probability of 1st event = $\frac{p}{1+p}$

Probability 2^{nd} event = $\frac{q}{1+q}$

$$\frac{p}{1+p} = 2\left(\frac{q}{1+q}\right) \qquad \dots \text{(ii)}$$

From (i) and (ii) p = 0 or 1

Probability of 1^{st} event = 0 or $\frac{1}{2}$

59. Answer A(S, T); B(P, S); C(T); D(R, T) Hint : $p(E) = \frac{n(E)}{n(S)}$

Solution :

Total number in set $S = 5 \times 5 \times 4 \times 3 = 300$

(A) If number is divisible by 4, the last two digits will be 04, 12, 20, 24, 32, 40, or 52.
Total number of numbers = 12 x 3 + 9 x 4 = 72

Required probability =
$$\frac{72}{300} = \frac{6}{25}$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2020

Test - 4A (Paper-1) (Code-B)_(Hints & Solutions)

(B) There should be either only one odd digit or only even digit in the number.

Total such numbers = ${}^{3}C_{1} \cdot 3|\underline{3} + {}^{2}C_{1} \cdot |\underline{4} + 3|\underline{3}|$ = 54 + 48 + 18 = 120

Required probability = $\frac{120}{300} = \frac{2}{5}$

(C) There are only 5 combinations of 4 digits possible (1, 2, 4, 5); (0, 3, 4, 5); (0, 2, 3, 4); (0, 1, 3, 5) or (0, 1, 2, 3)

Number of numbers divisible by 6 using

Number of numbers divisible by 6 using

$$(0, 3, 4, 5) = 10$$

Number of numbers divisible by 6 using

$$(0, 2, 3, 4) = 14$$

Number of numbers divisible by 6 using

$$(0, 1, 3, 5) = 6$$

Number of numbers divisible by 6 using

$$(0, 1, 2, 3) = 10$$

Total numbers divisible by 6 = 52

Required probability =
$$\frac{52}{300} = \frac{13}{75}$$

(D) If abcd is divisible by 11 then

$$a + c = b + d$$

Total number of numbers divisible by 11 = 48

Required probability = $\frac{48}{300} = \frac{4}{25}$

Answer A(T); B(Q); C(P, R); D(S)
 Hint : Three faces of a triangular prism are parallelogram.

Solution :

- (A) Let point B'(x, y, z)
 - :: AA'B'B is a parallelogram

- (B) Similarly C'(2, 4, 4)
- (C) Point of intersection of diagonals of face

AA'B'B is $\left(\frac{1}{2}, 1, \frac{5}{2}\right)$

Point of intersection of diagonals of face AA'C'C is (1, 2, 2)

Point of intersection of diagonals of face

$$BB'C'C \text{ is } \left(\frac{1}{2}, \frac{5}{2}, 3\right)$$

(D) D' is midpoint of B' and C', so

$$D'\left(\frac{3}{2},3,\frac{9}{2}\right)$$