# All India Aakash Test Series for JEE (Advanced)-2021

# TEST - 1A (Paper-1) - Code-E

Test Date : 17/11/2019

# ANSWERS

| PH  | IYSICS       | CHE | MISTRY       | МАТН | EMATICS   |
|-----|--------------|-----|--------------|------|-----------|
| 1.  | (A, C)       | 19. | (B, C, D)    | 37.  | (A, C)    |
| 2.  | (B, D)       | 20. | (A, B, D)    | 38.  | (B, C, D) |
| 3.  | (A, C, D)    | 21. | (B)          | 39.  | (B, D)    |
| 4.  | (A, C, D)    | 22. | (A, B, C, D) | 40.  | (A, D)    |
| 5.  | (A, B, C, D) | 23. | (B, C)       | 41.  | (B, C)    |
| 6.  | (A, B)       | 24. | (A, B, C)    | 42.  | (B, D)    |
| 7.  | (33)         | 25. | (10)         | 43.  | (15)      |
| 8.  | (24)         | 26. | (51)         | 44.  | (63)      |
| 9.  | (17)         | 27. | (68)         | 45.  | (11)      |
| 10. | (12)         | 28. | (15)         | 46.  | (12)      |
| 11. | (72)         | 29. | (12)         | 47.  | (24)      |
| 12. | (16)         | 30. | (18)         | 48.  | (04)      |
| 13. | (18)         | 31. | (20)         | 49.  | (01)      |
| 14. | (15)         | 32. | (50)         | 50.  | (07)      |
| 15. | (C)          | 33. | (A)          | 51.  | (C)       |
| 16. | (B)          | 34. | (B)          | 52.  | (C)       |
| 17. | (C)          | 35. | (A)          | 53.  | (A)       |
| 18. | (A)          | 36. | (C)          | 54.  | (D)       |

### **HINTS & SOLUTIONS**

# PART - I (PHYSICS)

1. Answer (A, C)

**Hint :**  $\Delta \vec{r} = \vec{r}_f - \vec{r}_i$ 

Sol. :

Displacement  $\vec{r} = \vec{r}_{f} - \vec{r}_{i}$ 

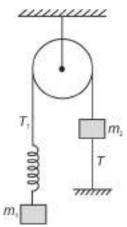
$$\Rightarrow \vec{r} = (3\hat{i} + 4\hat{j} + 5\hat{k}) - (2\hat{i} + 3\hat{j} + 5\hat{k}) = \hat{i} + \hat{j}$$

 $\vec{r}$  makes 45° with +ve *x*-axis in anticlockwise sense.

2. Answer (B, D)

Hint. : Sudden impulsive force by spring is zero.

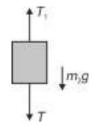
**Sol.** : Let the tension in string *BC* is *T* at equilibrium.



Then for  $m_1$  to be in equilibrium  $K\Delta x = m_1 g$ 

That means spring will be in extended condition and it will transmit  $T_1 = K\Delta x = m_1 g$  force on string attached with spring.

So, for (*m*<sub>2</sub>)



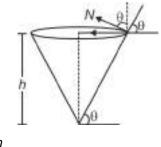
 $\Rightarrow$   $T = m_1g - m_2g$ 

When string *BC* is burnt suddenly then spring still transmit the same force so acceleration of mass  $m_1$  is zero. And acceleration of mass  $m_2$  is

$$a_2 = \frac{(m_1 - m_2)g}{m_2}$$

3. Answer (A, C, D) Hint :  $v^2 = gr \tan \theta$ 

Sol. :



$$\tan \theta = \frac{n}{r}$$

 $\Rightarrow r = \frac{h}{\tan \theta}$ 

Along the plane, with respect to cone the particle is in state of equilibrium.

$$\therefore mg\sin\theta = \frac{mv^2}{r} \cdot \cos\theta$$

$$\Rightarrow gr \cdot \frac{\sin\theta}{\cos\theta} = v^2 \Rightarrow v^2 = \frac{gh}{\tan\theta} \tan\theta$$

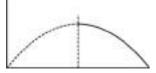
$$\therefore v^2 = gh$$
Also,  $N\cos\theta = mg$ 
And  $N\sin\theta = \frac{mv^2}{r}$ 

$$\therefore \quad N\sin\theta = \frac{mv^2}{h}\frac{\sin\theta}{\cos\theta} \quad \Rightarrow \quad N\cos\theta = \frac{mv^2}{h}$$

Answer (A, C, D) **Hint** : For velocity to become perpendicular to initial direction  $\theta > \frac{\pi}{4}$ .

Sol. :

4.



For velocity to become perpendicular to initial direction  $\theta > \frac{\pi}{4}$ .

For same case,  $m_1 = \tan \theta_1 = \tan \theta$ 

And 
$$m_2 = \tan\theta_2 = \frac{(u\sin\theta - gt)}{u\cos\theta}$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 1A (Paper-1) (Code-E)\_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2021

$$\therefore \quad (m_1 m_2 = -1) \implies \quad \frac{(u \sin \theta - gt)}{u \cos \theta} \cdot \frac{\sin \theta}{\cos \theta} = -1$$

$$\Rightarrow u \sin^2 \theta - gt \sin \theta = -u \cos^2 \theta$$

 $\Rightarrow \quad u = gt\sin\theta \quad \therefore \quad t = \frac{u}{g\sin\theta}$ 

And 1 s before, 
$$\theta_1 = \tan^{-1}\left(\frac{g}{u\cos\theta}\right)$$

So just after 1 s and before 1 s,  $\Delta \theta = 2\theta$ 

$$\Delta \theta = 2 \tan^{-1} \left( \frac{g}{u \cos \theta} \right)$$

5. Answer (A, B, C, D)

**Hint :** Tangential force will change the speed and perpendicular force will change the direction.

**Sol.**: If  $\vec{v}$  is opposite to  $\vec{F}$  the particle may retrace its path.

If  $\vec{F}$  is perpendicular to  $\vec{v}$  and so  $\vec{F}$  will provide the centripetal force and if  $|\vec{F}|$  is constant, then radius of curvature will be constant. And if at a particular time instant  $\vec{v}$  and  $\vec{F}$  are some angle other than 0° or 180° and  $\vec{F}$  is constant, then it's analogues of projectile motion. Particle will trace the parabolic path.

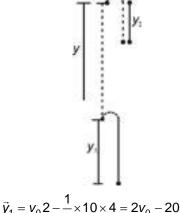
6. Answer (A, B)

Hint : 
$$v = \frac{dx}{dt}$$
;  $a = \frac{d^2x}{dt^2}$   
Sol. :  $x = \alpha t^3 + \beta t^2 + \gamma t + \delta$   
 $\therefore \frac{dx}{dt} = v = 3\alpha t^2 + 2\beta t + \gamma$   
 $\frac{d^2x}{dt^2} = a = 6\alpha t + 2\beta$   
 $\therefore 6\alpha t + 2\beta = 3\alpha t^2 + 2\beta t + \gamma$   
 $\Rightarrow 3\alpha t^2 + (2\beta - 6\alpha) t + \gamma - 2\beta = 0$   
Here,  $4(3\alpha - \beta)^2 - 4 \times 3\alpha(\gamma - 2\beta) = 0$  for unique  $t$   
 $\Rightarrow 9\alpha^2 + \beta^2 - 3\alpha\gamma = 0$   
And for that time instant  $t > 0$   
 $\therefore t = \frac{2(3\alpha - \beta)}{2 \times 3\alpha} = \frac{3\alpha - \beta}{3\alpha}$   
 $\therefore 3\alpha - \beta > 0$ 

7. Answer (33)

**Hint :** For vertical upward motion,  $y = u_y t - \frac{1}{2}gt^2$ 

**Sol.** : Let  $v_0$  was the velocity of dropping of  $1^{st}$  stone, then



$$y_1 = v_0^2 2$$
  
2  
 $|\vec{x}| = (20 - 2y_0)$  is the distance from c

 $\Rightarrow$   $|\vec{y}_1| = (20 - 2v_0)$  is the distance from dropping point.

After 1 sec balloon shall have velocity  $v_2 = (v_0 + 1)$ 

And it must have travelled  $|y| = \left(v_0 + \frac{1}{2}\right)$ .

Then 1 sec after 2<sup>nd</sup> particle will be at

$$y_2 = (v_0 + 1) - \frac{1}{2} \times 10 \times 1$$

$$\Rightarrow \left|\vec{y}_{2}\right| = 5 - v_{0} - 1 = 4 - v_{0}$$

Distance from dropping point

$$\therefore \text{ Separation} \Rightarrow s = |\vec{y}_1| + |\vec{y}| - |\vec{y}_2|$$
  

$$\Rightarrow s = 20 - 2v_0 + v_0 + \frac{1}{2} - 4 + v_0$$
  

$$\Rightarrow s = 16 + \frac{1}{2} = \frac{33}{2}$$
  

$$\therefore 2s = 33$$
  
8. Answer (24)  
**Hint**:  $v = \frac{dr}{dt}, \quad a = \frac{d^2r}{dt^2}$   
**Sol.**:  $\vec{r} = 2t\hat{i} + 4t^2\hat{j} + \hat{k}$   

$$\therefore \vec{v} = \frac{dr}{dt} = 2\hat{i} + 8t\hat{j}$$
  
And  $\vec{a} = \frac{d^2r}{dt^2} = 8\hat{j}$   
Acceleration is always along y direction.  
So, velocity in y direction at  $t = 3$  s is  

$$|\vec{v}_y| = |8t| \Rightarrow (8 \times 3) = 24$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

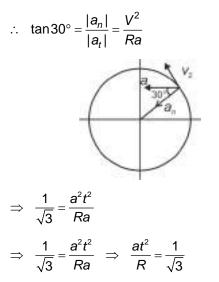
### All India Aakash Test Series for JEE (Advanced)-2021

### Test - 1A (Paper-1) (Code-E)\_(Hints & Solutions)

9. Answer (17)

**Hint :**  $\tan \theta = \frac{|a_n|}{|a_t|}$ 

Sol. : Angle with velocity vector is 30°.



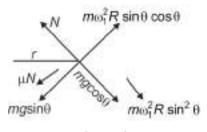
$$\therefore \quad t^2 = \frac{51}{\sqrt{3} \times \sqrt{3}} = 17$$

10. Answer (12)

**Hint** : 
$$N = mg\cos\theta + m\omega_1^2R\sin^2\theta$$

$$mg\sin\theta + \mu N = m\omega_1^2 R\sin\theta \cdot \cos\theta$$

**Sol.** : Let  $\omega_1$  be the maximum angular speed and  $\omega_2$  be the minimum angular speed, then



 $N = mg\cos\theta + m\omega_1^2 R\sin^2\theta$ 

And  $mg\sin\theta + \mu N = m\omega_1^2 R \sin\theta \cdot \cos\theta$ 

$$\Rightarrow mg\sin\theta + \mu mg\cos\theta + \mu m\omega_1^2 R\sin^2\theta$$
$$= m\omega_1^2 R\sin\theta\cos\theta$$

$$\Rightarrow \omega_1^2 R \sin \theta (\cos \theta - \mu \sin \theta) = g(\sin \theta + \mu \cos \theta)$$

$$\therefore \quad \omega_1^2 = \frac{g(\sin\theta + \mu\cos\theta)}{R\sin\theta(\cos\theta - \mu\sin\theta)}$$
  
Similarly, 
$$\omega_2^2 = \frac{g(\sin\theta - \mu\cos\theta)}{R\sin\theta(\cos\theta + \mu\sin\theta)}$$

$$\therefore \quad \frac{\omega_1^2}{\omega_2^2} = \frac{\left(\frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}} + \frac{2}{2\sqrt{2}}\right)}{\left(\frac{1}{\sqrt{2}} - \frac{1}{2\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}} - \frac{1}{2\sqrt{2}}\right)}$$
$$\Rightarrow \quad \frac{\omega_1^2}{\omega_2^2} = \frac{\left(\frac{3}{2\sqrt{2}}\right)^2}{\left(\frac{1}{2\sqrt{2}}\right)^2} = 9$$

$$\therefore \quad X = \frac{\omega_1}{\omega_2} = 3 \quad \therefore \quad 4X = 12$$

11. Answer (72)

Hint : 
$$\frac{mg}{120}x\mu = \frac{mg}{120}(120 - x)$$

**Sol.** : For state of impending motion, let *x* be the length on the table, then

$$\frac{m}{120} xg\mu = \frac{mg}{120} (120 - x)$$
$$\Rightarrow \frac{2}{3}x = 120 - x \Rightarrow \frac{5x}{3} = 120$$
$$\Rightarrow x = \frac{120 \times 3}{5} = 72$$

**Hint :** 
$$a = \frac{dv}{dt}$$

**Sol.**: 
$$v(t) = \frac{8}{\sqrt{3}}\hat{i} + 8t\hat{j}$$

At 
$$t = 1$$
 s,  $v = \frac{8}{\sqrt{3}}\hat{i} + 8\hat{j}$ 

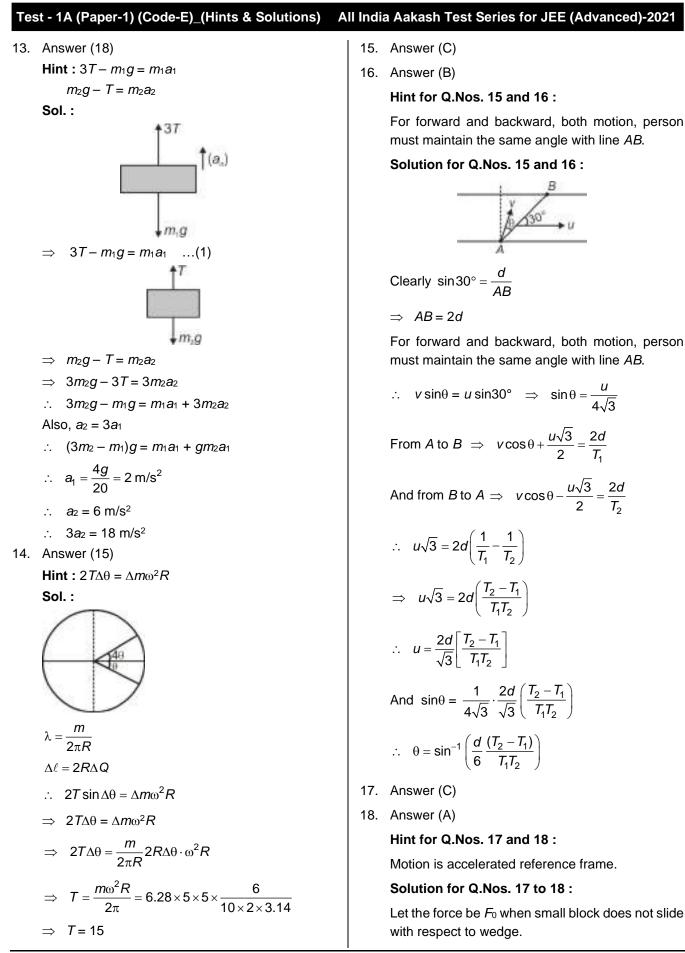
$$\therefore \quad \tan \theta = \frac{8}{8} \cdot \sqrt{3} \quad \therefore \quad \theta = 60^\circ$$

$$a_n = a\cos 60^\circ = 8 \times \frac{1}{2} = 4$$

1

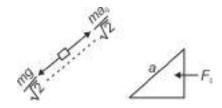
 $\therefore 4|\vec{a}_n| = 16$ 

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456



Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

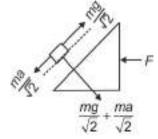
Then



$$\frac{mg}{\sqrt{2}} = \frac{ma_2}{\sqrt{2}} \quad \Rightarrow \quad a_0 = g$$

And 
$$F_0 = 2ma_0 = 2mg$$

As 
$$F = \frac{3}{2}F_0 \therefore \frac{3}{2} \cdot 2mg \implies F = 3mg$$



Now as F = 3mg, let the acceleration of block be a1 and wedge be a, then

$$\frac{ma}{\sqrt{2}} - \frac{mg}{\sqrt{2}} = ma_1$$

$$\therefore a_1 = \frac{1}{\sqrt{2}} - \frac{g}{\sqrt{2}}$$
And for wedge  $3mg - \left(\frac{mg}{2} + \frac{ma}{2}\right) = ma$ 

$$\Rightarrow 6mg - mg - ma = 2ma$$

$$\Rightarrow 5g = 3a \Rightarrow a = \frac{5g}{3}$$

$$\therefore a_1 = \frac{1}{\sqrt{2}} \left(\frac{5}{3} - 1\right)g = \frac{2g}{3\sqrt{2}} = \frac{\sqrt{2}g}{3}$$
So,  $\frac{L}{2} = \frac{1}{2} \frac{\sqrt{2}g}{3} \cdot t^2$ 

$$\Rightarrow t = \left[\frac{3L}{\sqrt{2}g}\right]^{\frac{1}{2}}$$

# PART - II (CHEMISTRY)

19. Answer (B, C, D) Hint : Oxygen is the limiting reagent. **Sol.**: Number of moles of Mg =  $\frac{1}{24}$ 

Number of moles of  $O_2 = \frac{1}{64}$ 

Initial moles 
$$\frac{1}{24}$$
  $\frac{1}{64}$   
Moles at the end  $\left(\frac{1}{24} - \frac{1}{24}\right)$  0

 $\frac{1}{32}$ 

 $2Mg + O_2 \rightarrow 2MgO$ 

Moles at the end  $\left(\frac{1}{24} - \frac{1}{32}\right)$ 

of reaction

Mass of Mg left unreacted

$$=\left[\frac{1}{24}-\frac{1}{32}\right]\times 24 = 0.25 \text{ g}$$

O<sub>2</sub> gas is consumed completely.

Mass of MgO formed =  $\frac{1}{32} \times 40 = 1.25$  g

20. Answer (A, B, D) Hint : Particles in the right zone have greater kinetic energy in distribution curve. Sol.: Greater the kinetic energy, greater would be the tendency to get evaporate  $T_2 > T_1$ . At higher temperature, vapour phase would exist. 21. Answer (B)

**Hint :** 
$$P_{real} = \frac{nRT}{V - nb} - a\left(\frac{n}{V}\right)$$

$$P_{ideal} = \frac{nRT}{V}$$

Sol.: When cylinder is full

$$P_{\text{real}} = \frac{60 \times 0.08 \times 300}{15 - (60 \times 0.05)} - 0.25 \left(\frac{60}{15}\right)^2$$
  
= 116 atm  
$$P_{\text{ideal}} = \frac{60 \times 0.08 \times 300}{15} = 96 \text{ atm}$$

After prolonged used,

$$P_{\text{real}} = \frac{0.60 \times 0.08 \times 300}{15 - (0.6 \times 0.05)} - (0.25) \left(\frac{0.6}{15}\right)^2 \approx 0.96 \text{ atm}$$
$$P_{\text{ideal}} = \frac{0.6 \times 0.08 \times 300}{15} = 0.96 \text{ atm}$$

22. Answer (A, B, C, D) Hint : All statements are correct.

**Sol.**: At constant V, 
$$P = \left(\frac{R}{V-b}\right)T$$
  
At constant P,  $V = b + \left(\frac{R}{P}\right)T$ 

$$Z=\frac{PV}{RT}=1+\frac{Pb}{RT}$$

Since Z > 1, the repulsive forces dominate over attractive forces.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

### Test - 1A (Paper-1) (Code-E)\_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2021

### 23. Answer (B, C)

**Hint :** The probability of finding electron,  $\psi^2$  is zero at radial nodes in an orbital.

**Sol. :** The radial wave function for a Bohr atom is given as

$$\psi(\text{radial}) = \frac{1}{16\sqrt{4}} \left[\frac{Z}{a_0}\right]^{\frac{3}{2}} \left[(\sigma - 1)(\sigma^2 - 8\sigma + 12)\right] e^{\frac{-\sigma}{2}}$$
  
where  $\sigma = \frac{2Zr}{a_0}$ 

At radial nodes,  $\psi^2 = 0$ 

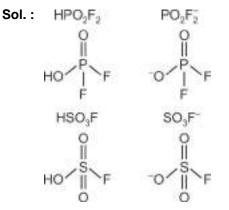
or 
$$(\sigma - 1) = 0$$
;  $\sigma = 1 \implies r = \frac{a_0}{2Z}$   
or  $\sigma^2 - 8\sigma + 12 = 0$ ;  $(\sigma - 6) (\sigma - 2) = 0$   
 $\implies \sigma = 6$  or 2;  $r = \frac{3a_0}{Z}$  or  $\frac{a_0}{Z}$ 

 $\therefore \quad \text{Minimum position of radial node, } r = \frac{a_0}{2Z}$ 

Maximum position of radial node,  $r = \frac{3a_0}{Z}$ 

24. Answer (A, B, C)

**Hint :** Hybridisation of central atom in all 4 molecules is same.



25. Answer (10)

**Hint :** Average atomic mass =  $\Sigma X_i M_i$ , where  $X_i$  is the mole fraction of an isotope and  $M_i$  is its atomic mass.

**Sol.**: Let the mole % of  ${}^{25}Mg$  be x. Therefore, mole % of  ${}^{26}Mg$  is (20 - x)%.

∴  $0.80 \times 24 + 0.01 \times 25 + 0.01 (20 - x) \times 26$ = 24.3 ∴ x = 10%

- 26. Answer (51) **Hint**: N<sub>2</sub> is the limiting reagent, that decides the maximum mass of NH<sub>3</sub>. **Sol.**: Number of moles of N<sub>2</sub> =  $\frac{42}{28} = 1.5$ Number of moles of H<sub>2</sub> =  $\frac{12}{2} = 6.0$ N<sub>2</sub> + 3H<sub>2</sub>  $\longrightarrow$  2NH<sub>3</sub> Initial moles 1.5 6.0 Final moles 0 1.5 3.0 Maximum mass of NH<sub>3</sub> gas formed =  $3.0 \times 17$ = 51 g
- 27. Answer (68)

Hint: Number of photons

Sol.: Energy of a photon of wavelength,

$$\lambda = 612 \text{ nm}$$

$$\mathsf{E} = \frac{\mathsf{hc}}{\lambda} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{612 \times 10^{-9}} = \frac{6.6 \times 10^{-17}}{204}$$

Minimum energy needed to see an object

$$= 2.2 \times 10^{-17} \text{J}$$

Number of photons required to see an object

$$=\frac{2.2\times10^{-17}\times204}{6.6\times10^{-17}}=68$$

28. Answer (15)

Hint : Molality of solution

 $= \frac{\text{Number of moles of solute}}{\text{Mass of solvents in kg}}$ 

**Sol. :** Molarity of the given solution = 3.9 M

Volume of solvent in 1 L solution = 1 L

Density of solvent = 
$$0.26 \text{ g mL}^{-1}$$

Mass of 1 L solvent = 260 gm

Molality of solution =  $\frac{3.9 \times 1000}{260} = 15 \text{ mol kg}^{-1}$ 

29. Answer (12)

Hint : For n = 4, l = 0, 1, 2, and 3 For |m<sub>e</sub>| = 1, m<sub>e</sub> = ±1 and

For 
$$|m_s| = \frac{1}{2}, m_s = \pm \frac{1}{2}$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

**Sol. :** For principal quantum number, n = 4, the possible values of azimuthal quantum number and magnetic quantum number are

$$\ell = 0$$
  $m_{\ell} = 0$ 

$$\ell = 1$$
 m <sub>$\ell$</sub>  = 0, ± 1

$$\ell = 2$$
 m <sub>$\ell$</sub>  = 0, ± 1, ± 2

$$\ell = 3$$
  $m_{\ell} = 0, \pm 1, \pm 2, \pm 3$ 

Given values of magnetic and spin quantum numbers are

$$|\mathbf{m}_{\ell}| = 1$$
;  $\Rightarrow \mathbf{m}_{\ell} = \pm 1$   
 $|\mathbf{m}_{s}| = \frac{1}{2}$ ;  $\Rightarrow \mathbf{m}_{s} = \pm \frac{1}{2}$ 

There are 6 orbitals which satisfy the given conditions and can accommodate 12 electrons.

30. Answer (18)

**Hint :** Angular momentum of electron in  $3^{rd}$  orbit of He<sup>+</sup> ion

$$mv_3r_3=3\left(\frac{h}{2\pi}\right)$$

Radius of electron in 3rd orbit of He+ ion

$$r_3 = \frac{(3)^2 a_0}{2}$$

KE of electron in 3<sup>rd</sup> orbit of He<sup>+</sup> ion =  $\frac{(mv_3)^2}{2m}$ 

**Sol.**: Angular momentum of an electron in n<sup>th</sup> orbit of a Bohr atom is given by

$$mvr = n \frac{h}{2\pi}$$

For an electron in 3<sup>rd</sup> orbit of He<sup>+</sup> ion,

$$mv_{3}r_{3} = 3\frac{h}{2\pi}$$

$$mv_{3} = \frac{3h}{2\pi r_{3}}$$

$$r_{3} = \frac{(3)^{2}a_{0}}{2} = \frac{9a_{0}}{2}$$

$$\therefore mv_{3} = \frac{3h \times 2}{2\pi \times 9a_{0}} = \frac{h}{3\pi a_{0}}$$

$$KE = \frac{(mv_{3})^{2}}{2m} = \frac{h^{2}}{2m \times 9\pi^{2}a_{0}^{2}} = \left(\frac{h^{2}}{\pi^{2}ma_{0}^{2}}\right)\left(\frac{1}{18}\right)$$

$$\therefore x = 18$$

31. Answer (20)

**Hint :** Molarity of stock solution  $\times$  V (ml) = 0.4  $\times$  460

**Sol. :** Millimoles of HCl in the final solution

$$= 0.4 \times 460$$

= 184

Mass of HCl in stock solution = 29.2 gm Number of moles of HCl in stock solution

$$= \frac{29.2}{36.5} = 0.8$$

Mass of HCl stock solution = 100 gm Density of stock solution = 1.15 g mL<sup>-1</sup> Volume of 100 g stock solution =  $\frac{100}{1.15}$  mL

Molarity of stock solution =  $\frac{0.8 \times 1.15 \times 1000}{100}$ 

Let V ml of stock solution is required  $9.2 \times V = 184$ 

$$V = \frac{184}{9.2} = 20 \text{ ml}$$

32. Answer (50)

**Hint :** Number of moles of  $C_2H_5Br$ = 0.80 × Number of moles of  $C_2H_6$  consumed Number of moles of n-butane

=  $\frac{0.56}{2}$  × Number of moles of C<sub>2</sub>H<sub>5</sub>Br consumed

**Sol.**: Let the volume of  $C_2H_6$  required at STP be x L.

Number of moles of C<sub>2</sub>H<sub>6</sub> required =  $\frac{x}{22.4}$ 

$$C_2H_6 + Br_2 \xrightarrow{hv}{125^{\circ}C} C_2H_5Br + HBr (80\% \text{ yield})$$

Number of moles of C<sub>2</sub>H<sub>5</sub>Br produced

= 
$$0.80 \times$$
 Number of moles of C<sub>2</sub>H<sub>6</sub> consumed

$$=\frac{0.80\times x}{22.4}$$

$$2C_2H_5Br + 2Na \xrightarrow{Dry}_{ether} C_4H_{10} + 2NaBr (56\% yield)$$

Number of moles of C<sub>4</sub>H<sub>10</sub> produced

$$= \frac{0.56}{2} \times \text{number of moles of } C_2H_5Br \text{ consumed}$$
$$= \frac{0.56 \times 0.80 \times x}{2 \times 22.4}$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Mass of C<sub>4</sub>H<sub>10</sub> produced = 
$$\frac{0.56 \times 0.80 \times x \times 58}{2 \times 22.4}$$
$$= 29 \text{ g}$$

x = 50 L

- 33. Answer (A)
  - **Hint :** Rate =  $\frac{\text{Volume diffused}}{\text{Time}}$

**Sol.:** 
$$\frac{r_X}{r_{O_2}} = \frac{V \times 5.65}{4 \times V} = \sqrt{\frac{32}{M_X}}; M_X = 16$$

34. Answer (B)

**Hint :** Rate = 
$$\frac{\text{Moles diffused}}{\text{Time}}$$

**Sol.:** 
$$r_{H_2} = \frac{x \times 32 \times 30}{2 \times 60 \times 1} = \sqrt{\frac{32}{2}}; x = 0.50 \text{ g}$$

35. Answer (A)

Hint & Sol. : Correct order of dipole moment  $H_2O > NH_3 > NF_3$ 

36. Answer (C)

**Hint & Sol.** : Compounds (I) and (II) have non-zero dipole moment because the resultant of all the bond dipole moments do not got cancelled.

### PART - III (MATHEMATICS)

37. Answer (A, C)

**Hint :** Form an equation whose roots are  $\frac{\alpha_i}{1+\alpha_i}$ 

where i = 1, 2, 3, 4.

**Sol.**:  $x^4 - 7x + 1 = 0$  has roots  $\alpha_1, \alpha_2, \alpha_3$  and  $\alpha_4$ .

Let 
$$y = \frac{x}{1+x} \Rightarrow x = \frac{y}{1-y}$$
  
 $\left(\frac{y}{1-y}\right)^4 - 7\left(\frac{y}{1-y}\right) + 1 = 0$   
 $\Rightarrow y^4 - 7y(1-y)^3 + (1-y)^4 = 0$   
 $\Rightarrow 9y^4 - 25y^3 + 27y^2 - 11y + 1 = 0 \dots(i)$   
The roots of equation (i) are  $\frac{\alpha_i}{1+\alpha_i}$ ;  $i = 1, 2, 3, 4$   
 $\sum_{i=1}^4 \frac{\alpha_i}{1+\alpha_i} = \text{Sum of roots of } (i) = \frac{25}{9}$   
 $\prod_{i=1}^4 \frac{\alpha_i}{1+\alpha_i} = \text{Product of roots of } (i) = \frac{1}{9}$ 

38. Answer (B, C, D)  
**Hint**: Put 
$$x - 2 = t$$
  
**Sol.**: Let  $x - 2 = t$   
 $\Rightarrow (t + 1)^4 + (t - 1)^4 = k$   
 $\Rightarrow t^4 + 6t^2 + 1 = \frac{k}{2}$   
 $\Rightarrow (t^2 + 3)^2 = 8 + \frac{k}{2}$   
 $\Rightarrow t^2 = -3 \pm \sqrt{8 + \frac{k}{2}}$  ...(i)

When  $t^2 > 0 \Rightarrow$  Two distinct real values of x

 $t^2 < 0 \Rightarrow$  Two imaginary values of x.

From (i) at least one value of  $t^2$  is negative, while other value may be positive if k > 2.

39. Answer (B, D) **Hint :** Put z = x + iy and solve for x and y. **Sol :** Let z = x + iy

Sol. : Let 
$$z = x + iy$$
  
 $x + iy + 1 + i = \sqrt{x^2 + y^2}$   
 $\Rightarrow (x + 1) + i(y + 1) = \sqrt{x^2 + y^2}$   
 $\Rightarrow y + 1 = 0 \text{ and } x + 1 = \sqrt{x^2 + y^2}$   
 $\Rightarrow y = -1 \text{ and } x = 0$   
So,  $z = -i$ 

40. Answer (A, D)

**Hint** : Range of f(x) is  $\begin{bmatrix} -\frac{1}{5}, \frac{1}{3} \end{bmatrix}$ .

Sol.: Domain of 
$$f(x)$$
 is  $R$  as  $x^2 + x + 4 \neq 0$ .

Let 
$$y = \frac{x+1}{x^2 + x + 4} = yx^2 + x(y-1) + (4y-1) = 0$$
  
 $\therefore x \in R, (y-1)^2 - 4y(4y-1) \ge 0$   
 $\Rightarrow 15y^2 - 2y - 1 \le 0$   
 $y \in \left[-\frac{1}{5}, \frac{1}{3}\right]$ 

41. Answer (B, C) **Hint**: Use properties. **Sol.**:  $\therefore 1 \notin A \cup (B \cap \{1, 2, 3\})$   $\Rightarrow 1 \notin A \text{ and } 1 \notin B \cap \{1, 2, 3\}$   $\Rightarrow 1 \notin A \text{ and } 1 \notin B$   $\Rightarrow 1 \notin A \cup B$   $\Rightarrow 1 \notin A \cup B$   $\Rightarrow 1 \in (A \cup B)'$   $\therefore 4 \notin B \cap \{1, 2, 3\} \text{ and } 5 \notin B \cap \{1, 2, 3\}$ So, the smallest possible set  $A = \{4, 5\}$ Also, smallest possible set  $B = \phi$  (when  $A = \{2, 3, 3\}$ 

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

4, 5})

# All India Aakash Test Series for JEE (Advanced)-2021 Test - 1A (Paper-1) (Code-E)\_(Hints & Solutions)

42. Answer (B, D) **Hint**: Use condition for common root. **Sol.**:  $(a_1b_2 - a_2b_1)(b_1c_2 - b_2c_1) = (a_1c_2 - a_2c_1)^2$   $\Rightarrow 3(-2\lambda) = (-\lambda)^2$   $\Rightarrow \lambda = 0, -6$ 43. Answer (15)

**Hint** : Use  $\tan\theta \cdot \tan(60^\circ - \theta) \cdot \tan(60^\circ + \theta) = \tan 3\theta$ **Sol.** :  $\tan 4^\circ \cdot \tan 8^\circ \cdot \tan 12^\circ \dots \tan 88^\circ$ 

 $= (\tan 4^{\circ} \cdot \tan 56^{\circ} \cdot \tan 64^{\circ})(\tan 8^{\circ} \cdot \tan 52^{\circ} \cdot \tan 68^{\circ}) \dots$  $(\tan 28^{\circ} \cdot \tan 32^{\circ} \cdot \tan 88^{\circ}) \cdot \tan 60^{\circ}$ 

=  $(\tan 12^{\circ} \cdot \tan 24^{\circ} \cdot \tan 36^{\circ} \cdot \tan 48^{\circ} \cdot \tan 60^{\circ} \cdot \tan 72^{\circ} \cdot$ 

tan84°)√3

- $= 3[(\tan 12^{\circ} \cdot \tan 48^{\circ} \cdot \tan 72^{\circ})(\tan 24^{\circ} \cdot \tan 36^{\circ} \cdot \tan 84^{\circ})]$
- = 3tan36°.tan72°

$$= 3 \cdot \frac{\sin 36^{\circ} \cdot \cos 18^{\circ}}{\cos 36^{\circ} \cdot \sin 18^{\circ}}$$
$$= 3 \left[ \frac{\sqrt{10 - 2\sqrt{5}} \cdot \sqrt{10 + 2\sqrt{5}}}{(\sqrt{5} + 1)(\sqrt{5} - 1)} \right]$$
$$= 3 \left[ \frac{\sqrt{100 - 20}}{4} \right]$$
$$= 3\sqrt{5}$$

44. Answer (63)

Hint: 
$$\tan C = -\tan(A+B) = -\frac{2\tan\left(\frac{A+B}{2}\right)}{1-\tan^2\left(\frac{A+B}{2}\right)}$$

Sol.: 
$$\because C = \pi - (A + B)$$
  
 $\Rightarrow \tan C = -\tan(A + B)$   
 $\Rightarrow \tan C = -\frac{2\tan\left(\frac{A+B}{2}\right)}{1 - \tan^2\left(\frac{A+B}{2}\right)}$   
Now,  $\tan\left(\frac{A+B}{2}\right) = \frac{\tan\frac{A}{2} + \tan\frac{B}{2}}{1 - \tan\frac{A}{2} \cdot \tan\frac{B}{2}}$   
 $= 8$   
So,  $\tan C = \frac{16}{63}$   
 $\cos C = \frac{63}{65}$ 

45. Answer (11)

**Hint :** Find the range of both trigonometric functions.

**Sol.:** 
$$\therefore$$
 2k+1  $\in \left[-\sqrt{193}, \sqrt{193}\right]$  ...(i)

Also,  $2k = 4\sec^2 y + \csc^2 y$ 

$$2k = 5 + 4\tan^2 y + \frac{1}{\tan^2 y}$$
  
2 k \in [9, \infty] ...(ii)

From (i) and (ii),

k = 5 or 6

46. Answer (12)

**Hint**:  $\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$ 

**Sol.**: 
$$\arg(z) = \arg(\sqrt{i}) - \arg(\sqrt{3} + i)$$

$$= \frac{1}{2} \arg(i) - \frac{\pi}{6}$$
$$= \frac{\pi}{4} - \frac{\pi}{6}$$
$$= \frac{\pi}{12}$$

47. Answer (24)

Hint :  $(A \times B \times B) \cap (A \times A \times B) = A \times (A \cap B) \times B$ Sol. : If  $(x, y, z) \in (A \times B \times B) \cap (A \times A \times B)$ , then  $x \in A, y \in A$  and  $y \in B, z \in B$ Possible number of values of x = 3Possible number of values of z = 4  $\therefore$   $n((A \times B \times B) \cap (A \times A \times B)) = 24$ 48. Answer (04) Hint : Put log<sub>2</sub>3 = a to simplify X and use  $(\sqrt{3} - 1)^2 = 2(2 - \sqrt{3})$  to simplify Y. Sol. :  $X = (4 + \log_2 3)(5 + \log_2 3) - (3 + \log_2 3)(6 + \log_2 3)$ Put log<sub>2</sub>3 = a  $\Rightarrow$  X = (4 + a)(5 + a) - (3 + a)(6 + a) = 2 $Y = \frac{1 + \log_2 (2 - \sqrt{3})}{\log_2 (\sqrt{3} - 1)} = \frac{\log_2 (4 - 2\sqrt{3})}{\log_2 (\sqrt{3} - 1)} = 2$ 

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

#### Test - 1A (Paper-1) (Code-E)\_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2021

49. Answer (01)

Hint: 
$$x \in \left[2n\pi + \frac{\pi}{4}, 2n\pi + \frac{\pi}{2}\right]$$
  
Sol.:  $\log_{\frac{\sqrt{3}}{2}}(\sin x) \le \log_{\frac{\sqrt{3}}{2}}(\cos x)$   
 $\Rightarrow \sin x \ge \cos x$  also  $\sin x > 0 \cap \cos x > 0$   
 $\Rightarrow x \in \left[2n\pi + \frac{\pi}{4}, 2n\pi + \frac{\pi}{2}\right]$   
 $\therefore x \in [0, 12]$ , then  $x \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right] \cup \left[\frac{9\pi}{4}, \frac{5\pi}{2}, \frac{\pi}{2}\right]$   
 $\therefore x$  is an integer, then  $x = 1$  only.  
Answer (07)

- 50.
  - **Hint** :  $f(x) = 3 + 2(\tan^2 x + \cot^2 x)$
  - **Sol.**:  $f(x) = \sin^2 x + \cos^2 x + \tan^2 x + \tan^2 x$

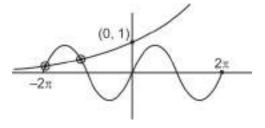
 $\cot^2 x + \sec^2 x + \csc^2 x$ 

- $\Rightarrow$   $f(x) = 3 + 2(\tan^2 x + \cot^2 x)$
- $\Rightarrow f(x) = 7 + 2(\tan x \cot x)^2$
- $\therefore$  Minimum value of f(x) = 7
- 51. Answer (C)

**Hint :**  $e^x = \sin x$ ; draw the graphs of LHS and RHS

**Sol.:**  $\therefore e^x = \sin x$ 

From the graph, there are two points of intersection.



Hint : Draw graphs of LHS and RHS.

Sol. : 
$$\log_2 |x| = |||x| - 1| - 1|$$

From the graph; we get 4 solutions.

53. Answer (A)

52. Answer (C)

**Hint :** Put  $x = \sin\theta \Rightarrow \sin 3\theta = \frac{1}{\sqrt{2}}$ 

**Sol.** : Let  $x = \sin \theta$ 

$$\Rightarrow \sin 3\theta = \frac{1}{\sqrt{2}} = \sin 45^\circ$$

So, possible value of  $\theta$  is 15°, then

$$x = \sin 15^\circ = \frac{\sqrt{3} - 1}{2\sqrt{2}}$$

54. Answer (D)

**Hint**: Put 
$$x = \sin\theta \Rightarrow \sin2\theta = \frac{\sqrt{10-2\sqrt{5}}}{4}$$

**Sol.**: Let 
$$x = \sin\theta$$

$$\Rightarrow \sin 2\theta = \frac{\sqrt{10 - 2\sqrt{5}}}{4}$$

$$\Rightarrow$$
 sin2 $\theta$  = sin36°

So, possible value of  $\theta$  is 18°, then

$$x = \sin 18^\circ = \frac{\sqrt{5} - 1}{4}$$



# All India Aakash Test Series for JEE (Advanced)-2021

# TEST - 1A (Paper-1) - Code-F

Test Date : 17/11/2019

# ANSWERS

|     |              | /   |              |      |           |
|-----|--------------|-----|--------------|------|-----------|
| Pł  | HYSICS       | CHE | MISTRY       | MATH | EMATICS   |
| 1.  | (A, B)       | 19. | (A, B, C)    | 37.  | (B, D)    |
| 2.  | (A, B, C, D) | 20. | (B, C)       | 38.  | (B, C)    |
| 3.  | (A, C, D)    | 21. | (A, B, C, D) | 39.  | (A, D)    |
| 4.  | (A, C, D)    | 22. | (B)          | 40.  | (B, D)    |
| 5.  | (B, D)       | 23. | (A, B, D)    | 41.  | (B, C, D) |
| 6.  | (A, C)       | 24. | (B, C, D)    | 42.  | (A, C)    |
| 7.  | (15)         | 25. | (50)         | 43.  | (07)      |
| 8.  | (18)         | 26. | (20)         | 44.  | (01)      |
| 9.  | (16)         | 27. | (18)         | 45.  | (04)      |
| 10. | (72)         | 28. | (12)         | 46.  | (24)      |
| 11. | (12)         | 29. | (15)         | 47.  | (12)      |
| 12. | (17)         | 30. | (68)         | 48.  | (11)      |
| 13. | (24)         | 31. | (51)         | 49.  | (63)      |
| 14. | (33)         | 32. | (10)         | 50.  | (15)      |
| 15. | (C)          | 33. | (A)          | 51.  | (C)       |
| 16. | (B)          | 34. | (B)          | 52.  | (C)       |
| 17. | (C)          | 35. | (A)          | 53.  | (A)       |
| 18. | (A)          | 36. | (C)          | 54.  | (D)       |

### HINTS & SOLUTIONS

## PART - I (PHYSICS)

1. Answer (A, B)

Hint :  $v = \frac{dx}{dt}$ ;  $a = \frac{d^2x}{dt^2}$ Sol. :  $x = \alpha t^3 + \beta t^2 + \gamma t + \delta$   $\therefore \quad \frac{dx}{dt} = v = 3\alpha t^2 + 2\beta t + \gamma$   $\frac{d^2x}{dt^2} = a = 6\alpha t + 2\beta$   $\therefore \quad 6\alpha t + 2\beta = 3\alpha t^2 + 2\beta t + \gamma$   $\Rightarrow \quad 3\alpha t^2 + (2\beta - 6\alpha) t + \gamma - 2\beta = 0$ Here,  $4(3\alpha - \beta)^2 - 4 \times 3\alpha(\gamma - 2\beta) = 0$  for unique t  $\Rightarrow \quad 9\alpha^2 + \beta^2 - 3\alpha\gamma = 0$ And for that time instant t > 0

$$\therefore \quad t = \frac{2(3\alpha - \beta)}{2 \times 3\alpha} = \frac{3\alpha - \beta}{3\alpha}$$

 $\therefore 3\alpha - \beta > 0$ 

2. Answer (A, B, C, D)

**Hint :** Tangential force will change the speed and perpendicular force will change the direction.

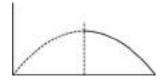
**Sol.**: If  $\vec{v}$  is opposite to  $\vec{F}$  the particle may retrace its path.

If  $\vec{F}$  is perpendicular to  $\vec{v}$  and so  $\vec{F}$  will provide the centripetal force and if  $|\vec{F}|$  is constant, then radius of curvature will be constant. And if at a particular time instant  $\vec{v}$  and  $\vec{F}$  are some angle other than 0° or 180° and  $\vec{F}$  is constant, then it's analogues of projectile motion. Particle will trace the parabolic path.

3. Answer (A, C, D)

**Hint :** For velocity to become perpendicular to initial direction  $\theta > \frac{\pi}{4}$ .

Sol. :



For velocity to become perpendicular to initial direction  $\theta > \frac{\pi}{4}$ .

For same case,  $m_1 = \tan \theta_1 = \tan \theta$ 

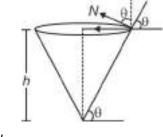
And 
$$m_2 = \tan \theta_2 = \frac{(u \sin \theta - gt)}{u \cos \theta}$$
  
 $\therefore \quad (m_1 m_2 = -1) \Rightarrow \quad \frac{(u \sin \theta - gt)}{u \cos \theta} \cdot \frac{\sin \theta}{\cos \theta} = -1$   
 $\Rightarrow \quad u \sin^2 \theta - gt \sin \theta = -u \cos^2 \theta$   
 $\Rightarrow \quad u = gt \sin \theta \quad \therefore \quad t = \frac{u}{g \sin \theta}$   
And 1 s before,  $\theta_1 = \tan^{-1} \left(\frac{g}{u \cos \theta}\right)$   
So just after 1 s and before 1 s,  $\Delta \theta = 2\theta$ 

$$\Delta \theta = 2 \tan^{-1} \left( \frac{g}{u \cos \theta} \right)$$

4. Answer (A, C, D)

**Hint** :  $v^2 = gr \tan \theta$ 

Sol. :



 $\tan \theta = \frac{h}{r}$ 

$$\Rightarrow r = \frac{h}{\tan \theta}$$

Along the plane, with respect to cone the particle is in state of equilibrium.

$$\therefore mg\sin\theta = \frac{mv^2}{r} \cdot \cos\theta$$

$$\Rightarrow gr \cdot \frac{\sin\theta}{\cos\theta} = v^2 \Rightarrow v^2 = \frac{gh}{\tan\theta} \tan\theta$$

$$\therefore v^2 = gh$$
Also,  $N\cos\theta = mg$ 
And  $N\sin\theta = \frac{mv^2}{r}$ 

$$\therefore N\sin\theta = \frac{mv^2}{h}\frac{\sin\theta}{\cos\theta} \Rightarrow N\cos\theta = \frac{mv^2}{h}$$

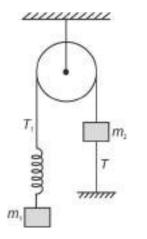
Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

### Test - 1A (Paper-1) (Code-F)\_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2021

5. Answer (B, D)

**Hint.** : Sudden impulsive force by spring is zero.

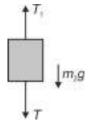
**Sol.** : Let the tension in string *BC* is *T* at equilibrium.



Then for  $m_1$  to be in equilibrium  $K\Delta x = m_1 g$ 

That means spring will be in extended condition and it will transmit  $T_1 = K\Delta x = m_1 g$  force on string attached with spring.

So, for  $(m_2)$ 



$$\Rightarrow$$
  $T = m_1g - m_2g$ 

When string *BC* is burnt suddenly then spring still transmit the same force so acceleration of mass  $m_1$  is zero. And acceleration of mass  $m_2$  is

$$a_2 = \frac{(m_1 - m_2)g}{m_2}$$

6. Answer (A, C)

**Hint** : 
$$\Delta \vec{r} = \vec{r}_f - \vec{r}_i$$

Sol. :

Displacement  $\vec{r} = \vec{r}_f - \vec{r}_i$ 

$$\Rightarrow \vec{r} = (3\hat{i} + 4\hat{j} + 5\hat{k}) - (2\hat{i} + 3\hat{j} + 5\hat{k}) = \hat{i} + \hat{j}$$

 $\vec{r}$  makes 45° with +ve *x*-axis in anticlockwise sense.

7. Answer (15) Hint :  $2T\Delta\theta = \Delta m\omega^2 R$ Sol. :



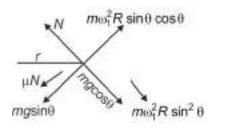
Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

| All | India Aakash Test Series for JEE (Advanced)-2021                                                          | 21 Test - 1A (Paper-1) (Code-F)_(Hints & Solutions)                                                                                                                                                                                                                           |
|-----|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.  | Answer (16)                                                                                               | $N = mg\cos\theta + m\omega_1^2 R\sin^2\theta$                                                                                                                                                                                                                                |
|     | <b>Hint</b> : $a = \frac{dv}{dt}$                                                                         | And $mg\sin\theta + \mu N = m\omega_1^2 R\sin\theta \cdot \cos\theta$                                                                                                                                                                                                         |
|     | <b>Sol.</b> : $v(t) = \frac{8}{\sqrt{3}}\hat{i} + 8\hat{t}\hat{j}$                                        | $\Rightarrow mg\sin\theta + \mu mg\cos\theta + \mu m\omega_1^2 R\sin^2\theta$                                                                                                                                                                                                 |
|     | 10                                                                                                        | $=m\omega_1^2R\sin\theta\cos\theta$                                                                                                                                                                                                                                           |
|     | $\therefore \vec{a} = 8\hat{j}$                                                                           | $\Rightarrow \omega_1^2 R \sin \theta (\cos \theta - \mu \sin \theta) = g(\sin \theta + \mu \cos \theta)$                                                                                                                                                                     |
|     | At $t = 1$ s, $v = \frac{8}{\sqrt{3}}\hat{i} + 8\hat{j}$                                                  | $\therefore  \omega_1^2 = \frac{g(\sin\theta + \mu\cos\theta)}{R\sin\theta(\cos\theta - \mu\sin\theta)}$                                                                                                                                                                      |
|     | $\therefore  \tan \theta = \frac{8}{8} \cdot \sqrt{3}  \therefore  \theta = 60^{\circ}$                   | Similarly, $\omega_2^2 = \frac{g(\sin\theta - \mu\cos\theta)}{R\sin\theta(\cos\theta + \mu\sin\theta)}$                                                                                                                                                                       |
|     | $\theta$<br>$\theta$<br>$\theta = 60^{\circ}$                                                             | $\therefore  \frac{\omega_1^2}{\omega_2^2} = \frac{\left(\frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}} + \frac{2}{2\sqrt{2}}\right)}{\left(\frac{1}{\sqrt{2}} - \frac{1}{2\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}} - \frac{1}{2\sqrt{2}}\right)}$ |
| 10. | $\therefore  a_n = a\cos 60^\circ = 8 \times \frac{1}{2} = 4$ $\therefore  4 \vec{a}_n  = 16$ Answer (72) | $\Rightarrow  \frac{\omega_1^2}{\omega_2^2} = \frac{\left(\frac{3}{2\sqrt{2}}\right)^2}{\left(\frac{1}{2\sqrt{2}}\right)^2} = 9$                                                                                                                                              |
|     | Hint: $\frac{mg}{120}x\mu = \frac{mg}{120}(120-x)$                                                        | $\therefore  X = \frac{\omega_1}{\omega_2} = 3  \therefore  4X = 12$                                                                                                                                                                                                          |
|     | <b>Sol.</b> : For state of impending motion, let $x$ be the length on the table, then                     | 12. Answer (17)                                                                                                                                                                                                                                                               |
|     | length on the table, then<br>$\frac{m}{120} xg\mu = \frac{mg}{120}(120 - x)$                              | <b>Hint</b> : $\tan \theta = \frac{ a_n }{ a_t }$                                                                                                                                                                                                                             |
|     | $\Rightarrow \frac{2}{3}x = 120 - x \Rightarrow \frac{5x}{3} = 120$                                       | <b>Sol.</b> : Angle with velocity vector is 30°.<br>∴ $\tan 30^\circ = \frac{ a_n }{ a_t } = \frac{V^2}{Ra}$                                                                                                                                                                  |
|     | $\Rightarrow x = \frac{120 \times 3}{5} = 72$                                                             | a <sub>t</sub>   Ra                                                                                                                                                                                                                                                           |
| 11. | Answer (12)                                                                                               | 1303                                                                                                                                                                                                                                                                          |

**Hint :**  $N = mg\cos\theta + m\omega_1^2 R\sin^2\theta$ 

$$mg\sin\theta + \mu N = m\omega_1^2 R\sin\theta \cdot \cos\theta$$

 $\mbox{Sol.}$  : Let  $\omega_1$  be the maximum angular speed and  $\omega_2$  be the minimum angular speed, then



 $\Rightarrow \frac{1}{\sqrt{3}} = \frac{a^2 t^2}{Ra}$  $\Rightarrow \frac{1}{\sqrt{3}} = \frac{a^2 t^2}{Ra} \Rightarrow \frac{a t^2}{R} = \frac{1}{\sqrt{3}}$ 

$$\therefore \quad t^2 = \frac{51}{\sqrt{3} \times \sqrt{3}} = 17$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Hint: 
$$v = \frac{dr}{dt}$$
,  $a = \frac{d^2 r}{dt^2}$   
Sol.:  $\vec{r} = 2t\hat{i} + 4t^2\hat{j} + \hat{k}$   
 $\therefore \quad \vec{v} = \frac{dr}{dt} = 2\hat{i} + 8t\hat{j}$   
And  $\vec{a} = \frac{d^2 r}{dt^2} = 8\hat{j}$ 

Acceleration is always along *y* direction. So, velocity in *y* direction at t = 3 s is

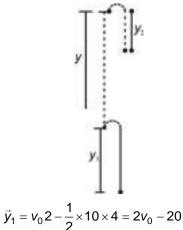
.2

$$|\vec{v}_{y}| = |8t| \implies (8 \times 3) = 24$$

14. Answer (33)

**Hint :** For vertical upward motion,  $y = u_y t - \frac{1}{2}gt^2$ 

**Sol.** : Let  $v_0$  was the velocity of dropping of  $1^{st}$  stone, then



 $\Rightarrow$   $|\vec{y}_1| = (20 - 2v_0)$  is the distance from dropping point.

After 1 sec balloon shall have velocity  $v_2 = (v_0 + 1)$ 

And it must have travelled  $|y| = \left(v_0 + \frac{1}{2}\right)$ .

Then 1 sec after 2<sup>nd</sup> particle will be at

$$y_2 = (v_0 + 1) - \frac{1}{2} \times 10 \times 1$$

$$\Rightarrow |\vec{y}_2| = 5 - v_0 - 1 = 4 - v_0$$

Distance from dropping point

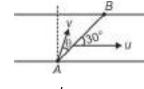
$$\therefore \text{ Separation} \Rightarrow s = |\vec{y}_1| + |\vec{y}| - |\vec{y}_2|$$
  
$$\Rightarrow s = 20 - 2v_0 + v_0 + \frac{1}{2} - 4 + v_0$$
  
$$\Rightarrow s = 16 + \frac{1}{2} = \frac{33}{2}$$
  
$$\therefore 2s = 33$$

- 15. Answer (C)
- 16. Answer (B)

### Hint for Q.Nos. 15 and 16 :

For forward and backward, both motion, person must maintain the same angle with line *AB*.

### Solution for Q.Nos. 15 and 16 :



Clearly  $\sin 30^\circ = \frac{d}{AE}$ 

 $\Rightarrow AB = 2d$ 

For forward and backward, both motion, person must maintain the same angle with line *AB*.

$$\therefore v \sin\theta = u \sin 30^{\circ} \Rightarrow \sin\theta = \frac{u}{4\sqrt{3}}$$
From *A* to *B*  $\Rightarrow$   $v \cos\theta + \frac{u\sqrt{3}}{2} = \frac{2d}{T_1}$ 
And from *B* to *A*  $\Rightarrow$   $v \cos\theta - \frac{u\sqrt{3}}{2} = \frac{2d}{T_2}$ 

$$\therefore u\sqrt{3} = 2d\left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

$$\Rightarrow u\sqrt{3} = 2d\left(\frac{T_2 - T_1}{T_1 T_2}\right)$$

$$\therefore u = \frac{2d}{\sqrt{3}}\left[\frac{T_2 - T_1}{T_1 T_2}\right]$$
And  $\sin\theta = \frac{1}{4\sqrt{3}} \cdot \frac{2d}{\sqrt{3}}\left(\frac{T_2 - T_1}{T_1 T_2}\right)$ 

$$\therefore \theta = \sin^{-1}\left(\frac{d}{6}\frac{(T_2 - T_1)}{T_1 T_2}\right)$$
17. Answer (C)

18. Answer (A)

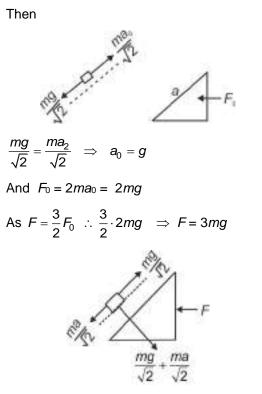
Hint for Q.Nos. 17 and 18 :

Motion is accelerated reference frame.

### Solution for Q.Nos. 17 and 18 :

Let the force be  $F_0$  when small block does not slide with respect to wedge.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456



Now as F = 3mg, let the acceleration of block be  $a_1$  and wedge be a, then

 $\frac{ma}{\sqrt{2}} - \frac{mg}{\sqrt{2}} = ma_1$  $\therefore \quad a_1 = \frac{1}{\sqrt{2}} - \frac{g}{\sqrt{2}}$ 

 $\Rightarrow 6mq - mq - ma = 2ma$ 

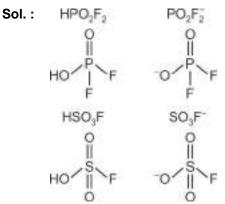
And for wedge  $3mg - \left(\frac{mg}{2} + \frac{ma}{2}\right) = ma$ 

$$\Rightarrow 5g = 3a \Rightarrow a = \frac{5g}{3}$$
  
$$\therefore a_1 = \frac{1}{\sqrt{2}} \left(\frac{5}{3} - 1\right) g = \frac{2g}{3\sqrt{2}} = \frac{\sqrt{2}g}{3}$$
  
So,  $\frac{L}{2} = \frac{1}{2} \frac{\sqrt{2}g}{3} \cdot t^2$   
$$\Rightarrow t = \left[\frac{3L}{\sqrt{2}g}\right]^{\frac{1}{2}}$$

# **PART - II (CHEMISTRY)**

19. Answer (A, B, C)

**Hint :** Hybridisation of central atom in all 4 molecules is same.



20. Answer (B, C)

**Hint :** The probability of finding electron,  $\psi^2$  is zero at radial nodes in an orbital.

**Sol. :** The radial wave function for a Bohr atom is given as

$$\psi(\text{radial}) = \frac{1}{16\sqrt{4}} \left[ \frac{Z}{a_0} \right]^{\frac{3}{2}} \left[ (\sigma - 1)(\sigma^2 - 8\sigma + 12) \right] e^{\frac{-\sigma}{2}}$$
where  $\sigma = \frac{2Zr}{\sigma}$ 

where  $\sigma = \frac{22}{a_0}$ 

At radial nodes,  $\psi^2 = 0$ 

or 
$$(\sigma - 1) = 0$$
;  $\sigma = 1 \implies r = \frac{a_0}{2Z}$   
or  $\sigma^2 - 8\sigma + 12 = 0$ ;  $(\sigma - 6) (\sigma - 2) = 0$ 

$$\Rightarrow \sigma = 6 \text{ or } 2; r = \frac{3a_0}{7} \text{ or } \frac{a_0}{7}$$

$$\therefore \text{ Minimum position of radial node, } r = \frac{a_0}{2Z}$$

Maximum position of radial node,  $r = \frac{3a_0}{Z}$ 

21. Answer (A, B, C, D) Hint: All statements are correct.

Sol.: At constant V, 
$$P = \left(\frac{R}{V-b}\right)T$$
  
At constant P,  $V = b + \left(\frac{R}{P}\right)T$   
 $Z = \frac{PV}{RT} = 1 + \frac{Pb}{RT}$ 

Since Z > 1, the repulsive forces dominate over attractive forces.

22. Answer (B)

Hint: 
$$P_{real} = \frac{nRT}{V - nb} - a\left(\frac{n}{V}\right)^2$$
  
 $P_{ideal} = \frac{nRT}{V}$ 

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

### Test - 1A (Paper-1) (Code-F)\_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2021

**Sol.**: When cylinder is full

= 116 atm

$$\mathsf{P}_{\mathsf{real}} = \frac{60 \times 0.08 \times 300}{15 - (60 \times 0.05)} - 0.25 \left(\frac{60}{15}\right)^2$$

$$P_{ideal} = \frac{60 \times 0.08 \times 300}{15} = 96 \text{ atm}$$

After prolonged used,

$$\mathsf{P}_{\mathsf{real}} = \frac{0.60 \times 0.08 \times 300}{15 - (0.6 \times 0.05)} - (0.25) \left(\frac{0.6}{15}\right)^2$$

≈ 0.96 atm

$$P_{ideal} = \frac{0.6 \times 0.08 \times 300}{15} = 0.96 \text{ atm}$$

23. Answer (A, B, D)

**Hint :** Particles in the right zone have greater kinetic energy in distribution curve.

**Sol.** : Greater the kinetic energy, greater would be the tendency to get evaporate  $T_2 > T_1$ .

At higher temperature, vapour phase would exist.

24. Answer (B, C, D)

Hint : Oxygen is the limiting reagent.

**Sol.** : Number of moles of Mg =  $\frac{1}{24}$ 

Number of moles of  $O_2 = \frac{1}{64}$ 

Initial moles

$$\frac{1}{64}$$

 $2Mg + O_2 \rightarrow 2MgO$ 

Moles at the end  $\left(\frac{1}{24} - \frac{1}{32}\right) = 0$ 

of reaction

Mass of Mg left unreacted

$$=\left[\frac{1}{24}-\frac{1}{32}\right]\times 24 = 0.25 \text{ g}$$

O2 gas is consumed completely.

Mass of MgO formed = 
$$\frac{1}{32} \times 40 = 1.25$$
 g

25. Answer (50)

**Hint :** Number of moles of  $C_2H_5Br$ 

=  $0.80 \times \text{Number of moles of } C_2H_6 \text{ consumed}$ Number of moles of n-butane

 $= \frac{0.56}{2} \times \text{Number of moles of } C_2H_5Br \text{ consumed}$ 

**Sol.**: Let the volume of  $C_2H_6$  required at STP be x L.

Number of moles of C<sub>2</sub>H<sub>6</sub> required = 
$$\frac{x}{22.4}$$

$$C_2H_6 + Br_2 \xrightarrow{hv} C_2H_5Br + HBr (80\% \text{ yield})$$

Number of moles of  $C_2H_5Br$  produced

= 
$$0.80 \times \text{Number of moles of } C_2H_6 \text{ consumed}$$

$$= \frac{0.80 \times x}{22.4}$$

$$2C_2H_5Br + 2Na \xrightarrow{Dry}_{ether} C_4H_{10} + 2NaBr (56\% \text{ yield})$$

Number of moles of C<sub>4</sub>H<sub>10</sub> produced

$$= \frac{0.56}{2} \times \text{number of moles of } C_2H_5Br \text{ consumed}$$
$$= \frac{0.56 \times 0.80 \times x}{2 \times 22.4}$$

Mass of C<sub>4</sub>H<sub>10</sub> produced =  $\frac{0.56 \times 0.80 \times x \times 58}{2 \times 22.4}$ 

*x* = 50 L

26. Answer (20)

**Hint :** Molarity of stock solution  $\times$  V (ml) = 0.4  $\times$  460

= 29 g

**Sol. :** Millimoles of HCl in the final solution

 $= 0.4 \times 460$ 

Mass of HCl in stock solution = 29.2 gm Number of moles of HCl in stock solution

$$=\frac{29.2}{36.5}=0.8$$

Mass of HCl stock solution = 100 gm Density of stock solution = 1.15 g mL<sup>-1</sup> Volume of 100 g stock solution =  $\frac{100}{1.15}$  mL Molarity of stock solution =  $\frac{0.8 \times 1.15 \times 1000}{100}$ = 9.2 M Let V ml of stock solution is required 9.2 x V = 184 V =  $\frac{184}{9.2}$  = 20 ml

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

### All India Aakash Test Series for JEE (Advanced)-2021 Test - 1A (Paper-1) (

### Test - 1A (Paper-1) (Code-F)\_(Hints & Solutions)

27. Answer (18)

Hint : Angular momentum of electron in  $3^{rd}$  orbit of He<sup>+</sup> ion

$$mv_3r_3 = 3\left(\frac{h}{2\pi}\right)$$

Radius of electron in 3rd orbit of He+ ion

$$r_3 = \frac{(3)^2 a_0}{2}$$

KE of electron in 3<sup>rd</sup> orbit of He<sup>+</sup> ion =  $\frac{(mv_3)^2}{2m}$ 

**Sol.** : Angular momentum of an electron in  $n^{th}$  orbit of a Bohr atom is given by

$$mvr = n\frac{h}{2\pi}$$

For an electron in 3<sup>rd</sup> orbit of He<sup>+</sup> ion,

h

$$mv_{3}r_{3} = 3\frac{1}{2\pi}$$

$$mv_{3} = \frac{3h}{2\pi r_{3}}$$

$$r_{3} = \frac{(3)^{2} a_{0}}{2} = \frac{9a_{0}}{2}$$
∴ 
$$mv_{3} = \frac{3h \times 2}{2\pi \times 9a_{0}} = \frac{h}{3\pi a_{0}}$$

$$KE = \frac{(mv_{3})^{2}}{2m} = \frac{h^{2}}{2m \times 9\pi^{2}a_{0}^{2}} = \left(\frac{h^{2}}{\pi^{2}ma_{0}^{2}}\right)\left(\frac{1}{18}\right)$$
∴ 
$$x = 18$$

28. Answer (12)

Hint : For n = 4, l = 0, 1, 2, and 3  
For 
$$|m_e| = 1$$
,  $m_e = \pm 1$  and  
For  $|m_s| = \frac{1}{2}$ ,  $m_s = \pm \frac{1}{2}$ 

**Sol.**: For principal quantum number, n = 4, the possible values of azimuthal quantum number and magnetic quantum number are

 $\begin{array}{ll} \ell=0 & m_\ell=0 \\ \\ \ell=1 & m_\ell=0,\pm 1 \\ \\ \ell=2 & m_\ell=0,\pm 1,\pm 2 \\ \\ \ell=3 & m_\ell=0,\pm 1,\pm 2,\pm 3 \\ \\ \\ \text{Given values of magnetic and spin quantum numbers are} \end{array}$ 

$$|\mathsf{m}_{\ell}| = 1 \ ; \Rightarrow \mathsf{m}_{\ell} = \pm 1$$

$$|\mathbf{m}_{s}| = \frac{1}{2}; \Rightarrow \mathbf{m}_{s} = \pm \frac{1}{2}$$

There are 6 orbitals which satisfy the given conditions and can accommodate 12 electrons.

Hint : Molality of solution

$$= \frac{\text{Number of moles of solute}}{\text{Mass of solvents in kg}}$$

**Sol.** : Molarity of the given solution = 3.9 MVolume of solvent in 1 L solution = 1 L Density of solvent =  $0.26 \text{ g mL}^{-1}$ Mass of 1 L solvent = 260 gm

Molality of solution = 
$$\frac{3.9 \times 1000}{260} = 15 \text{ mol kg}^{-1}$$

30. Answer (68)

Hint: Number of photons

 $= \frac{\text{Total energy absorbed}}{\text{Photon energy}}$ 

Sol.: Energy of a photon of wavelength,

 $\lambda = 612 \text{ nm}$ 

$$\mathsf{E} = \frac{\mathsf{hc}}{\lambda} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{612 \times 10^{-9}} = \frac{6.6 \times 10^{-17}}{204}$$

Minimum energy needed to see an object

 $= 2.2 \times 10^{-17} \text{J}$ 

Number of photons required to see an object

$$=\frac{2.2\times10^{-17}\times204}{6.6\times10^{-17}}=68$$

31. Answer (51)

**Hint :**  $N_2$  is the limiting reagent, that decides the maximum mass of  $NH_3$ .

Sol. : Number of moles of N<sub>2</sub> =  $\frac{42}{28} = 1.5$ Number of moles of H<sub>2</sub> =  $\frac{12}{2} = 6.0$ N<sub>2</sub> + 3H<sub>2</sub>  $\longrightarrow$  2NH<sub>3</sub> Initial moles 1.5 6.0

Final moles 0 1.5 3.0Maximum mass of NH<sub>3</sub> gas formed =  $3.0 \times 17$ 

= 51 g

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

### Test - 1A (Paper-1) (Code-F)\_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2021

#### 32. Answer (10)

**Hint :** Average atomic mass =  $\Sigma X_i M_i$ , where  $X_i$  is the mole fraction of an isotope and  $M_i$  is its atomic mass.

**Sol.**: Let the mole % of  ${}^{25}$ Mg be x. Therefore, mole % of  ${}^{26}$ Mg is (20 - x)%.

- ∴  $0.80 \times 24 + 0.011 \times 25 + 0.01 (20 x) \times 26$ = 24.3 ∴ x = 10%
- 33. Answer (A)

Н

**Sol.**: 
$$\frac{r_X}{r_{O_2}} = \frac{V \times 5.65}{4 \times V} = \sqrt{\frac{32}{M_X}}; M_X = 16$$

34. Answer (B)

**Hint :** Rate = 
$$\frac{\text{Moles diffused}}{\text{Time}}$$

**Sol.:** 
$$\frac{r_{H_2}}{r_{O_2}} = \frac{x \times 32 \times 30}{2 \times 60 \times 1} = \sqrt{\frac{32}{2}}; x = 0.50 \text{ g}$$

35. Answer (A)

Hint & Sol. : Correct order of dipole moment  $H_2O > NH_3 > NF_3$ 

36. Answer (C)

**Hint & Sol.** : Compounds (I) and (II) have non-zero dipole moment because the resultant of all the bond dipole moments do not got cancelled.

### **PART - III (MATHEMATICS)**

37. Answer (B, D) Hint: Use condition for common root. **Sol.**:  $(a_1b_2 - a_2b_1)(b_1c_2 - b_2c_1) = (a_1c_2 - a_2c_1)^2$  $\Rightarrow$  3(-2 $\lambda$ ) = (- $\lambda$ )<sup>2</sup>  $\Rightarrow$  $\lambda = 0. - 6$ 38. Answer (B, C) Hint: Use properties. **Sol.**:  $\therefore$  1  $\notin$  A  $\cup$  (B  $\cap$  {1, 2, 3})  $\Rightarrow$  1  $\notin$  A and 1  $\notin$  B  $\cap$  {1, 2, 3}  $\Rightarrow$  1  $\notin$  A and 1  $\notin$  B  $\Rightarrow$  1  $\notin$  A  $\cup$  B  $\Rightarrow$  1  $\in$  (A  $\cup$  B)'  $\therefore$  4  $\notin$  B  $\cap$  {1, 2, 3} and 5  $\notin$  B  $\cap$  {1, 2, 3} So, the smallest possible set  $A = \{4, 5\}$ Also, smallest possible set  $B = \phi$  (when  $A = \{2, 3, ..., A \}$ 4, 5})

39. Answer (A, D)

**Hint :** Range of f(x) is  $\begin{bmatrix} -\frac{1}{5}, \frac{1}{3} \end{bmatrix}$ . **Sol.**: Domain of f(x) is R as  $x^2 + x + 4 \neq 0$ . Let  $y = \frac{x+1}{y^2 + y + 4} = yx^2 + x(y-1) + (4y-1) = 0$  $\therefore x \in R, (y-1)^2 - 4y(4y-1) \ge 0$  $\Rightarrow 15v^2 - 2v - 1 \le 0$  $y \in \left[-\frac{1}{5}, \frac{1}{3}\right]$ 40. Answer (B, D) **Hint :** Put z = x + iy and solve for x and y. **Sol.**: Let z = x + iy $x + iy + 1 + i = \sqrt{x^2 + y^2}$  $\Rightarrow (x+1) + i(y+1) = \sqrt{x^2 + y^2}$  $\Rightarrow$  y+1=0 and x+1 =  $\sqrt{x^2 + y^2}$  $\Rightarrow$  y = -1 and x = 0 So. z = -i41. Answer (B, C, D) **Hint** : Put x - 2 = t**Sol.**: Let x - 2 = t $\Rightarrow (t+1)^4 + (t-1)^4 = k$  $\Rightarrow t^4 + 6t^2 + 1 = \frac{\kappa}{2}$ 

$$\Rightarrow (t^2 + 3)^2 = 8 + \frac{k}{2}$$
$$\Rightarrow t^2 = -3 \pm \sqrt{8 + \frac{k}{2}} \qquad \dots (i)$$

When  $t^2 > 0 \Rightarrow$  Two distinct real values of x

 $t^2 < 0 \Rightarrow$  Two imaginary values of x.

From (i) at least one value of  $\ell^2$  is negative, while other value may be positive if k > 2.

42. Answer (A, C)

**Hint :** Form an equation whose roots are  $\frac{\alpha_i}{1+\alpha_i}$ ,

where i = 1, 2, 3, 4.

**Sol.**:  $x^4 - 7x + 1 = 0$  has roots  $\alpha_1, \alpha_2, \alpha_3$  and  $\alpha_4$ .

Let 
$$y = \frac{x}{1+x} \Rightarrow x = \frac{y}{1-y}$$
$$\left(\frac{y}{1-y}\right)^4 - 7\left(\frac{y}{1-y}\right) + 1 = 0$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 1A (Paper-1) (Code-F)\_(Hints & Solutions)

$$\Rightarrow y^{4} - 7y(1 - y)^{3} + (1 - y)^{4} = 0 \qquad (4)$$

$$\Rightarrow 9y^{4} - 25y^{3} + 27y^{2} - 11y + 1 = 0 \qquad ((1)$$
The roots of equation (i) are  $\frac{\alpha_{i}}{1 + \alpha_{i}}$ ;  $i = 1, 2, 3, 4$ 

$$\sum_{i=1}^{4} \frac{\alpha_{i}}{1 + \alpha_{i}} = \text{Sum of roots of } (i) = \frac{25}{9}$$

$$\prod_{i=1}^{4} \frac{\alpha_{i}}{1 + \alpha_{i}} = \text{Product of roots of } (i) = \frac{1}{9}$$
43. Answer (07)
Hint:  $f(x) = 3 + 2(\tan^{2}x + \cot^{2}x)$ 
Sol::  $f(x) = \sin^{2}x + \cos^{2}x + \tan^{2}x + \cot^{2}x + \sec^{2}x + \csc^{2}x + \csc^{2}x + \csc^{2}x + \csc^{2}x + \cot^{2}x)$ 

$$\Rightarrow f(x) = 3 + 2(\tan^{2}x + \cot^{2}x)$$

$$\Rightarrow f(x) = 7 + 2(\tan x - \cot x)^{2}$$

$$\therefore \text{ Minimum value of } f(x) = 7$$
44. Answer (01)
Hint:  $x \in \left[2n\pi + \frac{\pi}{4}, 2n\pi + \frac{\pi}{2}\right]$ 
Sol::  $\log_{\sqrt{3}}(\sin x) \le \log_{\sqrt{3}}(\cos x)$ 

$$\Rightarrow \sin x \ge \cos x \operatorname{also } \sin x > 0 \cap \cos x > 0$$

$$\Rightarrow x \in \left[2n\pi + \frac{\pi}{4}, 2n\pi + \frac{\pi}{2}\right]$$

$$\therefore x \text{ is an integer, then  $x = 1$  only.
45. Answer (04)
Hint: Put log<sub>2</sub>3 = *a* to simplify X and use  $(\sqrt{3} - 1)^{2} = 2(2 - \sqrt{3})$  to simplify Y.
Sol.:
$$X = (4 + \operatorname{alg}(5 + a) - (3 + a)(6 + a) = 2$$

$$Y = \frac{1 + \log_{2}(2 - \sqrt{3})}{\log_{2}(\sqrt{3} - 1)} = \frac{\log_{2}(4 - 2\sqrt{3})}{\log_{2}(\sqrt{3} - 1)} = 2$$
46. Answer (24)
Hint:  $(A \times B \times B) \cap (A \times A \times B) = A \times (A \cap B) \times B$ 
Sol:  $1 \text{ If } (x, y, z) \in (A \times B \times B) \cap (A \times A \times B), \text{ then } x \in A, y \in A \text{ and } y \in B, z \in B$ 
Possible number of values of  $z = 4$ 

$$\therefore n((A \times B \times B) \cap (A \times A \times B)) = 24$$$$

7. Answer (12) Hint :  $\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$ Sol. :  $\arg(z) = \arg(\sqrt{i}) - \arg(\sqrt{3} + i)$   $= \frac{1}{2}\arg(i) - \frac{\pi}{6}$   $= \frac{\pi}{4} - \frac{\pi}{6}$   $= \frac{\pi}{12}$ 8. Answer (11) Hint : Find the range of both trigonometric functions. Sol. :  $\therefore 2k + 1 \in \left[-\sqrt{193}, \sqrt{193}\right] \dots(i)$ Also,  $2k = 4\sec^2 y + \csc^2 y$  $2k = 5 + 4\tan^2 y + \frac{1}{\tan^2 y}$ 

tan<sup>2</sup> y  

$$2 \ k \in [9, \infty]$$
 ...(ii)  
From (i) and (ii),  
 $k = 5 \text{ or } 6$ 

Hint: 
$$\tan C = -\tan(A+B) = -\frac{2\tan\left(\frac{A+B}{2}\right)}{1-\tan^2\left(\frac{A+B}{2}\right)}$$

**Sol.:** ::  $C = \pi - (A + B)$ 

$$\Rightarrow \tan C = -\tan(A + B)$$
$$\Rightarrow \tan C = -\frac{2\tan\left(\frac{A+B}{2}\right)}{1-\tan^2\left(\frac{A+B}{2}\right)}$$

Now, 
$$\tan\left(\frac{A+B}{2}\right) = \frac{\tan\frac{A}{2} + \tan\frac{B}{2}}{1 - \tan\frac{A}{2} \cdot \tan\frac{B}{2}}$$

8

$$= \frac{16}{63}$$

$$\cos C = \frac{63}{65}$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456



50. Answer (15)  
Hint : Use 
$$\tan\theta \cdot \tan(60^\circ - \theta) \cdot \tan(60^\circ + \theta) = \tan 3\theta$$
  
Sol. :  $\tan 4^\circ \cdot \tan 8^\circ \cdot \tan 12^\circ \dots \tan 88^\circ$   
=  $(\tan 4^\circ \cdot \tan 56^\circ \cdot \tan 64^\circ)(\tan 8^\circ \cdot \tan 52^\circ \cdot \tan 68^\circ)\dots$   
 $(\tan 28^\circ \cdot \tan 32^\circ \cdot \tan 88^\circ) \cdot \tan 60^\circ$   
=  $(\tan 12^\circ \cdot \tan 24^\circ \cdot \tan 36^\circ \cdot \tan 48^\circ \cdot \tan 60^\circ \cdot \tan 72^\circ \cdot$   
 $\tan 84^\circ)\sqrt{3}$   
=  $3[(\tan 12^\circ \cdot \tan 48^\circ \cdot \tan 72^\circ)(\tan 24^\circ \cdot \tan 36^\circ \cdot \tan 84^\circ)]$   
=  $3\tan 36^\circ \cdot \tan 72^\circ$   
=  $3 \cdot \frac{\sin 36^\circ \cdot \cos 18^\circ}{\cos 36^\circ \cdot \sin 18^\circ}$   
=  $3 \left[ \frac{\sqrt{10 - 2\sqrt{5}} \cdot \sqrt{10 + 2\sqrt{5}}}{(\sqrt{5} + 1)(\sqrt{5} - 1)} \right]$ 

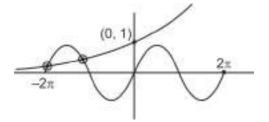
$$= 3 \cdot \frac{\sin 36^{\circ} \cdot \cos 18^{\circ}}{\cos 36^{\circ} \cdot \sin 18^{\circ}}$$
$$= 3 \left[ \frac{\sqrt{10 - 2\sqrt{5}} \cdot \sqrt{10 + 2\sqrt{5}}}{(\sqrt{5} + 1)(\sqrt{5} - 1)} \right]$$
$$= 3 \left[ \frac{\sqrt{100 - 20}}{4} \right]$$

51. Answer (C)

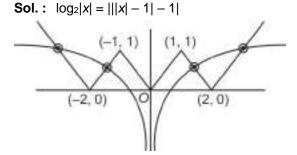
**Hint** :  $e^x = \sin x$ ; draw the graphs of LHS and RHS

**Sol.:**  $\therefore e^x = \sin x$ 

From the graph, there are two points of intersection.



52. Answer (C) Hint: Draw graphs of LHS and RHS.



From the graph; we get 4 solutions.

53. Answer (A)

**Hint**: Put  $x = \sin\theta \Rightarrow \sin 3\theta = \frac{1}{\sqrt{2}}$ 

**Sol.**: Let 
$$x = \sin \theta$$

$$\Rightarrow \sin 3\theta = \frac{1}{\sqrt{2}} = \sin 45^\circ$$

So, possible value of  $\theta$  is 15°, then

$$x = \sin 15^\circ = \frac{\sqrt{3} - 1}{2\sqrt{2}}$$

54. Answer (D)

**Hint**: Put 
$$x = \sin\theta \Rightarrow \sin 2\theta = \frac{\sqrt{10 - 2\sqrt{5}}}{4}$$

**Sol.**: Let 
$$x = \sin\theta$$

$$\Rightarrow \sin 2\theta = \frac{\sqrt{10 - 2\sqrt{5}}}{4}$$

 $\Rightarrow$  sin2 $\theta$  = sin36°

So, possible value of  $\theta$  is 18°, then

$$x = \sin 18^\circ = \frac{\sqrt{5} - 1}{4}$$

