TEST - 1A (Paper-2) - Code-G

Test Date : 17/11/2019

ANSWERS

PHYSICS		CHEMISTRY		MATHEMATICS	
1.	(B, C)	19.	(B, C, D)	37.	(B, D)
2.	(A, C, D)	20.	(B, C)	38.	(A, C)
3.	(B, C, D)	21.	(A, B, C, D)	39.	(A, B, D)
4.	(A, B, C)	22.	(A, D)	40.	(A, D)
5.	(A, B, C)	23.	(A, B, C)	41.	(A, B)
6.	(A, B, C, D)	24.	(B, C, D)	42.	(B, C)
7.	(12)	25.	(40)	43.	(02)
8.	(51)	26.	(28)	44.	(15)
9.	(02)	27.	(32)	45.	(20)
10.	(24)	28.	(23)	46.	(03)
11.	(15)	29.	(55)	47.	(08)
12.	(12)	30.	(06)	48.	(16)
13.	(03)	31.	(22)	49.	(20)
14.	(15)	32.	(28)	50.	(06)
15.	(B)	33.	(D)	51.	(D)
16.	(A)	34.	(B)	52.	(B)
17.	(B)	35.	(A)	53.	(C)
18.	(C)	36.	(C)	54.	(C)

HINTS & SOLUTIONS

PART - I (PHYSICS)

1. Answer (B, C) Hint : For constant acceleration,

$$s = \frac{1}{2}at^2; \quad v = u + at$$

Sol. : $v_1 = \alpha t_1$

Also,
$$\alpha t_1 - \beta (t - t_1) = 0$$

$$\therefore \quad t_1 = \frac{\beta t}{\alpha + \beta} \text{ and } t - t_1 = \frac{\alpha t}{(\alpha + \beta)}$$

$$\therefore$$
 $V_1 = \alpha t_1 = \frac{\alpha \beta \cdot t}{\alpha + \beta}$

Also,
$$s = s_1 + s_2 = \frac{1}{2} \frac{\alpha \cdot \beta^2 t^2}{(\alpha + \beta)^2} + \frac{1}{2} \frac{\beta \cdot \alpha^2 t^2}{(\alpha + \beta)^2}$$

$$\therefore \quad s = \frac{1}{2} \frac{\alpha \beta \cdot t^2 (\alpha + \beta)}{(\alpha + \beta)^2}$$
$$\Rightarrow \quad s = \frac{1}{2} \frac{\alpha \beta \cdot t^2}{(\alpha + \beta)}$$

2. Answer (A, C, D)

Hint : If $f_r = \mu N$, from there onwards the particle will start sliding.

Sol. : For $\mu_1 = 0.8$, $\mu_2 = 0.8$, both of the body shall not have any tendency to move so there will not be any tension in the string.

And for $\mu_1 = 0.5 = \mu_2$, both of the body shall have same acceleration along the plane. So, yet again there will not be any tension in the string.

In case if $\mu_1 = 0.4$ and $\mu_2 = 0.8$, the acceleration of the system

$$a_{0} = \frac{\left(150 \times \frac{3}{5}\right) - \left(\frac{4}{10} \times 50 \times \frac{4}{5}\right) - \left(\frac{6}{10} \times 10 \times 10 \times \frac{4}{5}\right)}{15}$$

$$\Rightarrow \quad a_{0} = \frac{90 - 16 - 48}{15} = \frac{26}{15}$$

Now, FBD of (m_1)

$$\Rightarrow 50 \times \frac{3}{5} - \frac{4}{10} \times 50 \times \frac{4}{5} - T = 5 \times \frac{26}{15}$$
$$\Rightarrow 30 - 16 - \frac{26}{3} = T$$
$$\Rightarrow T = \frac{16}{3} N \Rightarrow \frac{42 - 26}{3} = T$$

3. Answer (B, C, D)

Hint : Motion will be symmetrical about the vertical line.

Sol.: Motion will be symmetrical about the vertical line. So from 16.45 m to maximum height, the particle will take 2 s.

:. In 2 s,
$$h_1 = \frac{1}{2} \times 10 \times 2 \times 2 = 20 \text{ m}$$

So, maximum height = 16.45 + 20 = 36.45 m Speed of projection $\Rightarrow v^2 = 2 \times 10 \times 36.45 = 729$

$$\Rightarrow$$
 v = 27 m/s and T = $\frac{2u}{g}$ = 5.4 s

4. Answer (A, B, C)

Hint :
$$v = \sqrt{4a^2 + b^2}$$

Sol. : Angle between acceleration vector and velocity vector is $\frac{\pi}{2}$.

Speed at any time $|\vec{v}| = \sqrt{4a^2 + b^2}$

$$\therefore \quad T = \frac{2\pi}{2} = \pi \text{ s}$$
$$\therefore \quad S = \pi \sqrt{4a^2 + b^2}$$

5. Answer (A, B, C)

Hint : If *A* remains stationary, then net force on *A* by plane is in vertically upward direction.

Sol. : If *A* remains stationary, then net force on *A* is in vertically upward direction. So, mass *B* will also experience the force because of *A* in vertically downward direction only, hence both of mass *A* and *B* will remain stationary.

For equilibrium of *B*, horizontal force will be zero.

 $\Rightarrow N \sin\theta = f_r \cos\theta$

And if *B* starts moving, then *N* force should be less than $mg \cos\theta$.

6. Answer (A, B, C, D)

Hint : Uniform motion.

Sol.: For uniform motion in one direction values of average speed, instantaneous speed, magnitude of average velocity, magnitude of instantaneous velocity, all happens to be same.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

7. Answer (12)

Hint : $v \sin 30^\circ = 10 \sin 37^\circ$

If $v \sin 30^\circ = 10 \sin 37^\circ$, then Shyam collides with Ram.

$$\therefore \quad \frac{v}{2} = 10 \times \frac{3}{5} \quad \Rightarrow \quad v = 12 \text{ m/s}$$

8. Answer (51)

Hint : Displacement = Area under *v*-*t* curve

Sol.:
$$|\vec{r}| = (8 \times 6) + \left(\frac{1}{2} \times 2 \times 8\right) - \left(\frac{1}{2} \times 2 \times 5\right)$$

 $\Rightarrow |\vec{r}| = 48 + 8 - 5 = 51$

9. Answer (02)

Hint & Sol. : $a_{\tau} = \alpha L$

$$\mu \sqrt{\alpha^2 L^2 + g^2} = \omega^2 L$$
$$\omega = \alpha t$$
$$\therefore \quad t = 2 \text{ s}$$

10. Answer (24)

Hint :
$$m_1 \omega_0^2 R_1 - \mu m_1 g - m_2 \omega_0^2 R_2 - \mu m_2 g = 0$$

Sol. : At time of just about to slip

$$m_{1}\omega_{0}^{2}R_{1} - \mu m_{1}g - m_{2}\omega_{0}^{2}R_{2} - \mu m_{2}g = 0$$

$$\Rightarrow 8\omega_{0}^{2}(1) - 2 \times \omega_{0}^{2} \cdot \frac{1}{2} = \mu g(10)$$

$$\Rightarrow 7\omega_{0}^{2} = \frac{7}{10} \times 10 \times 10 \Rightarrow \omega_{0}^{2} = 10$$
Now, FBD at (m_{1})

$$\frac{T}{\mu m_{0}g} \longrightarrow m_{1}\omega_{0}^{2}R_{1}$$

$$\Rightarrow 8 \times (1) \times 10 = T + \frac{7}{10} \times 8 \times 10$$

$$\Rightarrow 80 - 56 = T$$

$$\Rightarrow T = 24 \text{ N}$$

11. Answer (15)Hint : Finally, at the time of striking the ground the

velocity vector will be perpendicular to initial direction.

Sol. : Its a projectile motion with initial speed $|\vec{u}| = 75\sqrt{2}$ m/s and angle 45°.

And acceleration is in -ve *y*-direction as a = g = -10j.

So, definitely total time of flight T will be the time instant when its velocity will be perpendicular to its 'initial velocity'.

$$\therefore \quad t = T = \frac{2u\sin\theta}{g} = \frac{2 \times 75\sqrt{2} \times 1}{\sqrt{2} \times 10}$$

Hint :
$$\vec{a}_{P, qr} = \vec{a}_{P, M} + \vec{a}_{M, gr}$$

Sol. :

$$\vec{a}_{pgr} = \vec{a}_{P,M} + \vec{a}_{M,gr}$$

: String is fixed so load *P* will slide on wedge with an acceleration a_0 only.

$$\vec{a}_{pgr} = (a_0 - a_0 \cos \theta)\hat{i} - a_0 \sin \theta\hat{j} = a_0 \frac{2}{5}\hat{i} - a_0 \frac{4}{5}\hat{j}$$

$$\therefore \quad |\vec{a}| = \frac{2a_0}{5}\sqrt{4+1} = \frac{2}{5} \times 6\sqrt{5} \cdot \sqrt{5} = 12$$

13. Answer (03)

Hint : $2F = mg \sin\theta + \mu mg \cos\theta$

 $F = mg \sin\theta - \mu mg \cos\theta$

Sol. :
$$2F = mg\sin\theta + \mu mg\cos\theta$$

 $F = mg\sin\theta - \mu mg\cos\theta$

 \therefore and $\mu = tan\phi$

Now, $2mg\sin\theta - 2\mu mg\cos\theta = mg\sin\theta + \mu mg\cos\theta$

$$\Rightarrow mg\sin\theta = 3\mu mg\cos\theta \Rightarrow \sin\theta = 3\mu\cos\theta$$

$$\therefore \quad \tan\theta = 3\tan\phi \implies \frac{\tan\theta}{\tan\phi} = 3$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 1A (Paper-2) (Code-G)_(Hints & Solutions)

14. Answer (15)

Hint : Just after cutting the string, force on *B* is 90 N.

Sol. : Before cutting the string, force on *B* is

 \therefore T = 90 N

So, just after cutting the string resulting force on B is 90 N.

$$\therefore a_0 = \frac{90}{6} = 15 \text{ m/s}^2$$

15. Answer (B)

Hint : Constraint motion **Sol.** : Speed of $R = v_1 = 3$ m/s Speed of $Q = v_1 + 2v_2 = 3 + 4 = 7$ m/s Speed of $P = 3v_1 + 2v_2 = 9 + 4 = 13$ m/s Speed of *P* w.r.t. $A = 3v_1 + 2v_2 - v_1 = 10$ m/s

16. Answer (A)

Hint :
$$\frac{dy}{dt} = 3 \text{ m/s};$$
 $\frac{dx}{dt} = y$
Sol. : $\frac{dy}{dt} = 3 \text{ m/s}$ \therefore $y = 3t$...(1)
 $\frac{dx}{dt} = 3t$ \therefore $x = \frac{3t^2}{2}$
And $\frac{d^2x}{dt^2} = 3$
 \therefore $x = \frac{3}{2} \cdot \left(\frac{y}{3}\right)^2 \implies x = \frac{y^2}{6}$
 \therefore $6(1) = 2y \frac{dy}{dx} \implies \frac{dy}{dx} = \frac{3}{y}$
At $y = 3 \text{ m}, \frac{dy}{dx} = \tan \theta = 1 \therefore \theta = 45^\circ$
 $|\vec{a}| = \frac{d^2x}{dt^2} = 3 \text{ m/s}^2$

$$\therefore |a_n| = \frac{3}{\sqrt{2}}, |\vec{a}_z| = \frac{3}{\sqrt{2}}$$

$$x (\text{at } y = 4 \text{ m}) = \frac{4 \times 4}{6} = 8/3$$
At $y = 4 \text{ m}; t = 4/3 \quad \therefore \quad v_x = 3 \times 4/3 = 4 \text{ m/s}$

$$\therefore |\vec{v}| = 5 \text{ m/s}$$

17. Answer (B) Hint : Constraint motion Sol.:

For (A),

$$\Rightarrow \frac{T}{2} = ma \dots (1) \qquad 2mg - T = 2m\frac{a}{2} \text{ for } (B)$$

3

$$\Rightarrow \frac{2mg}{3m} = a \Rightarrow a = \frac{2 \times 10}{3} = \frac{20}{3}$$

$$\therefore \text{ Acceleration of } B = \frac{a}{2} = \frac{10}{3}$$

$$T = 2 \times (1) \times \frac{20}{3} = \frac{40}{3}$$

And
$$\uparrow N = \frac{T\sqrt{3}}{2}$$
$$\Rightarrow N + \frac{T\sqrt{3}}{2} = mg + T$$

$$\Rightarrow N = 10 + \frac{40}{3} - \frac{20\sqrt{3}}{3} = \frac{70 - 20\sqrt{3}}{3}$$

18. Answer (C)

Hint : If $f_r = 0$, then $mg \frac{3}{5} = m\omega_0^2 R \frac{4}{5}$ Sol. : For particular speed when no friction force is acting $mg \times \frac{3}{5} = m\omega_0^2 \cdot R \cdot \frac{4}{5}$ $\Rightarrow \frac{10 \times 3}{5} = \omega_0^2 \times \frac{2 \times 4}{5}$ $\Rightarrow \omega_0^2 = \frac{30}{8} \Rightarrow \omega_0 \simeq 1.94 \text{ rad/s}^2$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

So, if ω is higher than ω_0 , the friction force will act downward along the plane and if ω is less than ω_0 , then friction force will act upward along the plane.

Now, if ω_1 is the maximum value of $\omega,$ when the mass will not skid, then

$$mg\frac{3}{5} + \mu N = m\omega^2 R \cos\theta$$

$$N = mg\frac{4}{5} + m\omega^2 R \sin\theta = \left(mg\frac{4}{5} + m\omega^2 \times 2 \times \frac{3}{5}\right)$$

$$\therefore mg\frac{3}{5} + \frac{4}{10}mg\frac{4}{5} + \frac{4}{10}m\omega^2 \times \frac{6}{5} = m\omega^2 \times 2 \times \frac{4}{5}$$

$$\Rightarrow 3g + \frac{16g}{10} = \omega^2(8 - 2.4) \Rightarrow \omega^2 = \frac{(30 + 16)}{8 - 2.4}$$

$$\omega_{\text{max}} = 2.86 \text{ rad/s}$$

:. Similarly
$$\omega_{\min} = \sqrt{\frac{30 - 16}{8 + 2.4}} = 1.16 \text{ rad/s}$$

So, finally if ω is less than 1.16 rad/s the mass will skid downward and if ω is greater than 2.86, then mass will skid upward along the plane. And in between the range of ω in 1.16 < ω < 2.86, the mass will remain stationary with respect to wedge.

PART - II (CHEMISTRY)

19. Answer (B, C, D) Hint : B.O. of CO = 3B.O. of $CO^+ = 3.5$ **Sol.**: $N_2 = 3$ Bond length $\propto \frac{1}{Bond orde}$ N₂⁺ 2.5 NO⁺ NO- $BO \rightarrow 3$ $BO \rightarrow 2$ $O_2 BO = 2$ $O_3 BO \rightarrow 1.5$ 20. Answer (B, C) Hint : Mass of air displaced = V x d **Sol.** : Weight of payload = 80×10^3 Let number of balloons required be x. $80 \times 10^3 + 0 + 100x = \frac{nRT}{R}x \times 1.25$ x = 26.8... Number of balloon = 27 and 30 21. Answer (A, B, C, D) Hint : Number of moles = Molarity × volume (L) **Sol.**: Let the volumes of 0.1 M $Fe_2(SO_4)_3$ and 0.1 M Al₂(SO₄)₃ solutions to be mixed be V_1 and V_2 respectively.

Number of moles of cations = $0.2V_1 + 0.2V_2$ = $0.2(V_1 + V_2)$ Number of moles of anions = $0.3V_1 + 0.3V_2$ = $0.3 (V_1 + V_2)$ Moles of cations Moles of anions = $\frac{0.2(V_1 + V_2)}{0.3(V_1 + V_2)} = \frac{2}{3}$

So, molar ratio of cations to anions will be always 2 : 3 irrespective of the values of V_1 and V_2 .

22. Answer (A, D)

Hint : Each P is sp³ hybridised.

23. Answer (A, B, C)

÷

Hint : Time taken to complete 1 revolution = $\frac{2\pi r}{v}$ Sol. : Time taken to complete one revolution in an orbit, $T \propto \frac{n^3}{Z^2}$

$$T_{2}(H) \propto \frac{(2)}{(1)^{2}} \propto 8; \qquad T_{4}(He^{+}) \propto \frac{(4)}{(2)^{2}} \propto 16$$

$$\cdot \quad \frac{T_{2}(H)}{T_{4}(He^{+})} = \frac{8}{16} = \frac{1}{2}$$

$$\frac{n_{2}(H)}{n_{4}(H)} = \frac{2}{4} = \frac{1}{2}$$

Radius of nth orbit, $r_n = \left(\frac{n^2}{Z}\right) (r_1)_H$ $r_2(H) = \frac{(2)^2}{1} r_1(H); \quad r_4(He^+) = \frac{(4)^2}{2} r_1(H) = 8r_1(H)$ $\frac{r_2(H)}{r_4(He^+)} = \frac{4}{8} = \frac{1}{2}$

Energy of electron in nth orbit, $E_n = -13.6 \frac{Z^2}{n^2} eV$

$$E_{2}(H) = -13.6 \frac{(1)^{2}}{(2)^{2}} = -\frac{13.6}{4} \text{ eV}$$

$$E_{4}(He^{+}) = -13.6 \frac{(2)^{2}}{(4)^{2}} = -\frac{13.6}{4} \text{ eV}$$

$$\frac{E_{2}(H)}{E_{4}(He^{+})} = 1$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

....

All India Aakash Test Series for JEE (Advanced)-2021 Test - 1A (Paper-2) (Code-G)_(Hints & Solutions)

24. Answer (B, C, D)

Hint :
$$A - He$$
, $B - H_2$, $C - CH_4$ and $D - CO$

25. Answer (40)

Hint & Sol. :

 $N_2 \implies u = 10$

- $O_2 \implies v = 10$
- $CN^{-} \Rightarrow w = 10$
- $NO^+ \implies x = 10$
- 26. Answer (28)

Hint : Increase in weight is due to oxidation of FeO, present in the mixture, to Fe_2O_3 .

Sol.: Let the mass of FeO in 100 gm mixture of FeO and Fe₂O₃ be x gm. On heating the entire amount of FeO is converted into Fe₂O₃.

$$4FeO + O_2 \longrightarrow 2Fe_2O_3$$

Percentage increase in weight = $\frac{32 \times x}{4 \times 72} = 8$

- x = 72 gm
- \therefore Percentage of Fe₂O₃ in the given mixture = 28%
- 27. Answer (32)

Hint : Eka silicon is Germanium.

Sol. : Atomic number of eka-silicon (Germanium) = 32

- 28. Answer (23)
 - Hint: Bohr's model

Sol. : For H-atom, transition $n_2 \rightarrow n_1$, $\lambda = 92$ nm

$$\frac{1}{92} = R_{H}(1)^{2} \left[\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right] \qquad \dots (i)$$

For He⁺ ion,

$$\frac{1}{\lambda} = R_{H}(2)^{2} \left[\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right] \qquad \dots (ii)$$

Solving (i) and (ii), we get

$$\lambda = \frac{92}{4} = 23 \text{ nm}$$

29. Answer (55)

Hint : Moles of CaCl₂ = Moles of CaCO₃ = Moles of CaO

Sol. : Mass of mixture of CaCl₂ and NaCl = 3.70 gm

$$CaCl_2 + Na_2CO_3 \longrightarrow CaCO_3 + 2NaCl_3$$

$$CaCO_3 \xrightarrow{\Delta} CaO + CO_2$$
0.84 gm

Moles of $CaCl_2$ = Moles of $CaCO_3$ = Moles of CaO

$$=\frac{0.84}{56}=0.015$$

Mass of $CaCl_2 = 0.015 \times 111 \text{ gm}$

% of CaCl₂ =
$$\frac{0.015 \times 111 \times 100}{3.70} = 45\%$$

 \therefore % of NaCl in the given mix = 55%

30. Answer (06)

Hint : For Be, Mg and He, EGE is positive.

Sol. : EGE is negative for Li, C, F, Cl, Na, K.

=

Hint : KE of iodine atoms =
$$\frac{1}{2}$$
[IE – BE]

Sol. : Incident energy (IE) given to I2 molecule

$$\frac{6.6 \times 10^{-34} \times 3 \times 10^8}{4500 \times 10^{-10}} = 4.4 \times 10^{-19} \text{ J}$$

Minimum energy required to dissociate I2 molecule

$$=\frac{240\times1000}{6\times10^{23}}=4.0\times10^{-19}\,J$$

KE of 2 iodine atoms = $(4.4 - 4.0)10^{-19}$

KE / lodine atom = $2.0 \times 10^{-20} = x \times 10^{y}$

$$x + |y| = 2 + |-20| = 22$$

32. Answer (28)

Hint : Excitation energy =
$$13.6 \left[\frac{1}{(1)^2} - \frac{1}{n^2} \right]$$

Sol. : Energy absorbed by H-atoms = 13.3875 eVLet the electron of H-atom be excited from ground state to nth orbit.

$$\therefore \quad 13.3875 = 13.6 \left[\frac{1}{(1)^2} - \frac{1}{(n)^2} \right]$$

On solving, n = 8 Total number of lines in the spectrum of hydrogen

$$= \sum (8-1) = \sum (7) = 28$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 1A (Paper-2) (Code-G) (Hints & Solutions)
33. Answer (D)
Hint : Number of hybridised orbitals, H is given by

$$H = \frac{1}{2}[V + M - C + A]$$
.
Sol. :
Acid Basicity No. of % of Hybridisation
 π -bonds O of central
atom
HO - S-OH 2 2 $\simeq 64\%$ sp^3

HO-CI=O 1 3
$$\simeq 64\%$$
 sp³
O=C-OH 2 2 $\simeq 71\%$ sp²
O=C-OH 3 1 $\simeq 64\%$ sp³

34. Answer (B)

Hint : Molality

Sol.:

NaOH solution :

Molarity =
$$\frac{6 \times 1000}{40 \times 250}$$
 = 0.6 M
Molality = 0.6 m $\left\{ \because d_{H_2O} = \frac{1 \text{ gm}}{\text{cc}} \right\}$
Mole fraction of NaOH = $\frac{0.15}{0.15 + \frac{250}{18}} = 0.07$

Glucose solution :

Molarity =
$$\frac{54 \times 1000}{180 \times 500}$$
 = 0.6 M
Molality = 0.6 m
Mole fraction of glucose = $\frac{0.30}{0.30 + \frac{500}{18}}$ = 0.07
NaOH + HCl \longrightarrow NaCl + H₂O
m mole 70 10
60 0 10 10

Molarity of excess NaOH = $\frac{60}{100}$ = 0.6 M Benzene – Toluene mixture Number of moles of benzene = $\frac{31.2}{78}$ = 0.4 Number of moles of toluene = $\frac{55.2}{92}$ = 0.6 Mole fraction of benzene = 0.4 Molarity of benzene in solution = $\frac{0.4 \times 1000}{\frac{55.2}{0.87}}$ = 6.3 M 35. Answer (A)

Hint: d_{z^2} has no planar nodes but has two angular nodes.

Sol.: Number of radial/spherical nodes in an orbital = n - l - 1

Number of planar/angular nodes in an orbital = I

Orbital d_{z^2} has two angular nodes but no planar nodes.

36. Answer (C)

Hint : Emission spectrum of H-atom and H-like species has lines in the UV region, IR and far IR region.

Sol. :

$$Z = 39$$
, $n_1 = 5$ and $n_2 = 13$

$$\frac{1}{\lambda} = R_{\rm H} (39)^2 \left[\frac{1}{(5)^2} - \frac{1}{(13)^2} \right]; \ \lambda = \frac{25}{1296 R_{\rm H}}$$

$$Z = 48$$
, $n_1 = 4$ and $n_2 = 5$

$$\frac{1}{\lambda} = R_{H}^{} (48)^{2} \left[\frac{1}{(4)^{2}} - \frac{1}{(5)^{2}} \right]; \ \lambda = \frac{25}{1296 R_{H}}$$

$$Z = 2$$
, $n_1 = 2$ and $n_2 = 3$

$$\frac{1}{\lambda} = R_{H}(2)^{2} \left[\frac{1}{(2)^{2}} - \frac{1}{(3)^{2}} \right]; \ \lambda = \frac{9}{5 R_{H}}$$

$$Z = 1$$
, $n_1 = 1$ and $n_2 = 3$

$$\frac{1}{\lambda} = R_{H}(1)^{2} \left[\frac{1}{(1)^{2}} - \frac{1}{(3)^{2}} \right]; \ \lambda = \frac{9}{8 R_{H}}$$

All transitions from higher energy orbits to 4th orbit lie in 'far IR region' for H-atom.

All transitions from higher energy orbit to 2nd orbit lie in UV region except H-atom which lie in visible region.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

PART - III (MATHEMATICS)

37. Answer (B, D) **Hint :** Put z = x + iy and solve for x and y. **Sol.**: Let z = x + iy $x^{2} + v^{2} - 5(x + iv) = 10i$ $\Rightarrow x^2 + y^2 - 5x = 0$ and -5y = 10 \Rightarrow y = -2 and x = 1 or 4 \Rightarrow z = 1 - 2i or 4 - 2i 38. Answer (A, C) **Hint** : f(x) and g(x) have a common factor. **Sol.**: f(x) and g(x) both are factors of a cubic polynomial then f(x) = 0 and g(x) = 0 have a common root. $x^{2} + (k^{2} - 29)x - k = 0$...(i) $2x^{2} + (2k - 43)x + k = 0$...(ii) Applying condition for common roots, $(2k - 58 - 2k + 43)(-2k^2 + 43k - k^2 + 29k)$ $= (2k + k)^2$ $\Rightarrow 4k^2 - 120k = 0 \Rightarrow k = 0 \text{ or } 30$ 39. Answer (A, B, D) **Hint** : $-\sqrt{3}x = 2y = z$ **Sol.**: $(-\sqrt{3}x)^2 + (2y)^2 + (z)^2 - (-\sqrt{3}x)(2y)$ $-(2y)(z) - (z)(-\sqrt{3}x) = 0$ $\Rightarrow -\sqrt{3}x = 2y = z = k$ (where $k \in R - \{0\}$) $\Rightarrow x = \frac{-k}{\sqrt{3}}, y = \frac{k}{2}, z = k$ So, $xy = -\frac{k^2}{2\sqrt{2}} < 0$, $yz = \frac{k^2}{2} > 0$ $x(x+y+z) = \frac{k^2}{3} - \frac{k^2}{2\sqrt{3}} - \frac{k^2}{\sqrt{3}} = k^2 \left(\frac{1}{3} - \frac{\sqrt{3}}{2}\right) < 0$ and $xy + zx = -\frac{k^2}{2\sqrt{3}} - \frac{k^2}{\sqrt{3}} < 0$ 40. Answer (A, D) **Hint**: $[x]^2 - [x] - 20 > 0 \Rightarrow [x] \in (-\infty, -4) \cup (5, \infty)$ **Sol.** : f(x) exists if $[x]^2 - [x] - 20 > 0 \Rightarrow [x] \in (-\infty, -4) \cup (5, \infty)$ $\Rightarrow x \in (-\infty, -4) \cup [6, \infty)$

41. Answer (A, B) **Hint :** Put z = ki, where $k \in R$ **Sol.**: If the equation has a purely imaginary root, then z = ki; ($k \in R$) will satisfy the equation. $-k^{2}(1-i) + k(-2i+1) - 3i = m$ $\Rightarrow -k^2 + k = m$ and $k^2 - 2k - 3 = 0$ k = -1, 3So, m = -2, -642. Answer (B, C) **Hint**: $\sqrt{3} \sin x + \cos x = 2(\cos x + \cos 5x)$ $\Rightarrow \frac{\sqrt{3}}{2}\sin x - \frac{1}{2}\cos x = \cos 5x$ **Sol.**: $\sqrt{3} \sin x + \cos x = 2(\cos 5x + \cos x)$ $\Rightarrow \frac{\sqrt{3}}{2}\sin x - \frac{1}{2}\cos x = \cos 5x$ $\Rightarrow \cos 5x = \cos \left(\frac{2\pi}{3} - x\right)$ $\Rightarrow 5x = 2n\pi \pm \left(\frac{2\pi}{2} - x\right)$, where $n \in Z$ $\Rightarrow x = \frac{n\pi}{2} + \frac{\pi}{2}$ or $x = \frac{n\pi}{2} - \frac{\pi}{6}$ 43. Answer (02) **Hint** : $\cot\theta - \tan\theta = 2\cot2\theta$ **Sol.**: $\tan 55^\circ - \tan 35^\circ = \frac{\sin(55^\circ - 35^\circ)}{\cos 55^\circ \cdot \cos 35^\circ}$ $=\frac{2\sin 20^{\circ}}{2\sin 35^{\circ}\cdot\cos 35^{\circ}}$ $=\frac{2\sin 20^{\circ}}{\sin 70^{\circ}}=2\tan 20^{\circ}$ And 2cot40° - cot20° + 2tan20° $= (\cot 20^\circ - \tan 20^\circ) - \cot 20^\circ + 2\tan 20^\circ$ $= tan 20^{\circ}$ So, $\frac{\tan 55^\circ - \tan 35^\circ}{2\cot 40^\circ - \cot 20^\circ + 2\tan 20^\circ} = 2$ 44. Answer (15) Hint: $(x-3)^2 + 2\cos^2\left(\frac{\pi x}{r}\right) = 0$ **Sol.**: $(x^2 - 6x + 9) + \left(1 + \cos\left(\frac{2\pi x}{n}\right)\right) = 0$ $\Rightarrow (x-3)^2 + 2\cos^2\left(\frac{\pi x}{n}\right) = 0$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

$$\Rightarrow x = 3 \text{ and } \cos\left(\frac{\pi x}{n}\right) = 0$$
$$\Rightarrow \alpha = 3 \Rightarrow \cos\left(\frac{3\pi}{n}\right) = 0$$
$$\Rightarrow n = 2 \text{ or } 6$$

Maximum value of $\alpha^2 + n = 15$

45. Answer (20)

Hint:
$$\cos^{2} \frac{r\pi}{7} = \frac{1}{2} \left(1 + \cos \frac{2r\pi}{7} \right)$$

Sol.: $\cos^{2} \frac{\pi}{7} + \cos^{2} \frac{2\pi}{7} + \cos^{2} \frac{3\pi}{7}$
 $= \frac{1}{2} \left[\left(1 + \cos \frac{2\pi}{7} \right) + \left(1 + \cos \frac{4\pi}{7} \right) + \left(1 + \cos \frac{6\pi}{7} \right) \right]$
 $= \frac{1}{2} \left[3 + \left(\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} \right) \right]$
 $= \frac{1}{2} \left[3 + \frac{\sin \frac{3\pi}{7}}{\sin \frac{\pi}{7}} \cdot \cos \frac{4\pi}{7} \right]$
 $= \frac{1}{2} \left[3 - \frac{2\sin \frac{3\pi}{7} \cdot \cos \frac{3\pi}{7}}{2\sin \frac{\pi}{7}} \right]$
 $= \frac{1}{2} \left[3 - \frac{1}{2} \right] = \frac{5}{4}$

46. Answer (03)

Hint :
$$f(x) = 1 - 2\left(\frac{x}{1+x^2}\right)$$

Sol. : $f(x) = \frac{1+x^2-2x}{1+x^2} = 1 - 2\left(\frac{x}{1+x^2}\right)$
 $\therefore x + \frac{1}{x} \in (-\infty, -2] \cup [2, \infty)$
 $\Rightarrow \frac{x^2+1}{x} \in (-\infty, -2] \cup [2, \infty)$
 $\Rightarrow \frac{x}{x^2+1} \in \left[-\frac{1}{2}, \frac{1}{2}\right]$
 $f(x) \in [0, 2]$
Number of integers in the range of $f(x)$ is 3.

47. Answer (08)

Hint: Draw graph

Sol.: If we draw the two graph |x| + |y| = 4 and |x + y| + |x - y| = 5

There are 8 points of intersection.

48. Answer (16) **Hint**: $x^3 - 2x^2 - 11x + 12 < 0 \cap x^2 - 2x - 48 < 0$ **Sol.**: $\therefore x^3 - 2x^2 - 11x + 12 < 0$ and

$$(x-1)(x+3)(x-4) < 0$$
 and $(x-8)(x+6) < 0$
 $x \in (-\infty, -3) \cup (1, 4)$ and $x \in (-6, 8)$
So, $x \in (-6, -3) \cup (1, 4)$
Integral value of x will be $-5, -4, 2, 3$.

 $x^2 - 2x - 48 < 0$

49. Answer (20)

Hint : $(a - b)(a^2 + b^2 + ab) = a^3 - b^3$ Sol. :

$$X = X = \log_3(3 - \sqrt[3]{2}) + \log_3(3^2 + (\sqrt[3]{2})^2 + 3 \cdot \sqrt[3]{2})$$

 $X = \log_3(3^3 - 2) = \log_3 25$

Now, $5X \cdot \log_5 9 = 5(\log_3 25)(\log_5 9)$

$$= 5(2\log_3 5)(2\log_5 3)$$

= 20

50. Answer (06)

Hint : Product of roots is negative.

Sol. :

Case 1 : One positive and one negative root $a \cdot c < 0$

$$\Rightarrow m(m^2-6m-7)<0$$

$$\Rightarrow m \in (-\infty, -1) \cup (0, 7)$$

Case 2 : Two equal positive roots

 $D = 0 \cap m < 0 \Rightarrow$ no integral value of *m* exist.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2021 Test - 1A (Paper-2) (Code-G)_(Hints & Solutions) 51. Answer (D) (Q) $f(x) > 0 \Rightarrow x^2 - \sqrt{3}ax + 1 < 0 \Rightarrow a \in \phi$ **Hint** : Draw graph of y = f(x)(R) If f(x) = 0 has real roots, then **Sol.** : y = f(x) $x^2 - \sqrt{3}ax + 1 = 0$ has real roots (3, 3)(-1, 3) $3a^2 - 4 > 0$ $a \in \left(-\infty, -\frac{2}{\sqrt{2}}\right) \cup \left(\frac{2}{\sqrt{2}}, \infty\right)$ (1, 1)(1,0) (-4.0) (6, 0)(S) If f(x) = 0 has all roots imaginary, then $x^2 - \sqrt{3}ax + 1 = 0$ has imaginary roots (:: $x^2 + \sqrt{3}x + 1 = 0$ already has imaginary roots) 52. Answer (B) $a \in \left(-\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}\right)$ **Hint**: sin2A + sin2B + sin2C = 4sinAsinBsinC $\cos 2A + \cos 2B + \cos 2C$ $= -1 - 4\cos A\cos B\cos C$ Sum of all roots = $S = \sqrt{3}a - \sqrt{3}$ $\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C$ $S \in (-2 - \sqrt{3}, 2 - \sqrt{3})$ Sol.: 54. Answer (C) (P) \therefore cos2A + cos2B + cos2C **Hint** : $\arg(z_1 \cdot z_2) = \arg(z_1) + \arg(z_2)$ $= -1 - 4\cos A\cos B\cos C$ $=-\frac{\sqrt{3}+1}{2}$ and $\arg\left(\frac{z_1}{z}\right) = \arg(z_1) - \arg(z_2)$ (Q) $\sin^2 A + \sin^2 B + \sin^2 C$ Sol.: $=\frac{3-(\cos 2A+\cos 2B+\cos 2C)}{2}$ (P) $z + \overline{z} + z\overline{z}$ is purely real, $\arg(z+\overline{z}+z\overline{z})$ is 0 or π $=\frac{7+\sqrt{3}}{4}$ (Q) $\arg\left(\frac{(1+\sqrt{3}i)(\sqrt{3}-i)(1+i)}{(\sqrt{3}+i)}\right)$ (R) $\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C$ $=\frac{3+\sqrt{3}}{\sqrt{3}-1}$ $= \arg(1 + \sqrt{3}i) + \arg(\sqrt{3} - i) + \arg(1 + i)$ $- \arg(\sqrt{3} + i)$ (S) $\sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C$ $=\frac{\pi}{3}+\left(-\frac{\pi}{6}\right)+\frac{\pi}{4}-\frac{\pi}{6}$ $=\frac{3+\sqrt{3}}{2}$ $z_{1}(-2+i)$ 53. Answer (C) $=\frac{\pi}{4}$ Hint: $f(x) = -2(x^2 + \sqrt{3}x + 1)(x^2 - \sqrt{3}ax + 1)$ (R) arg(z) may be π **Sol.**: $f(x) = (a-1)(x^2 + \sqrt{3}x + 1)^2 - (a + 1)$ (S) $z_1 = iz_2$ $[(x^{2}+1)^{2}-3x^{2}]$ $\Rightarrow \arg(z_1) = \frac{\pi}{2} + \arg(z_2) \quad \dots(i)$ $= (a-1)(x^{2}+\sqrt{3}x+1)^{2} - (a+1)$ $(x^2 - \sqrt{3}x + 1)(x^2 + \sqrt{3}x + 1)$ also, $\arg(z_1 z_2) = \frac{2\pi}{2}$ $= -2(x^{2} + \sqrt{3}x + 1)(x^{2} - \sqrt{3}ax + 1)$ $\arg(z_1) + \arg(z_2) = \frac{2\pi}{2}$...(ii) $\therefore x^2 + \sqrt{3}x + 1 > 0$ (P) If $f(x) < 0 \Rightarrow x^2 - \sqrt{3}ax + 1 > 0$ for all $x \in R$ (i) + (ii),

 $\arg(z_1)=\frac{7\pi}{12}$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

 $\Rightarrow 3a^2 - 4 < 0 \Rightarrow a \in \left(-\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}\right)$

TEST - 1A (Paper-2) - Code-H

Test Date : 17/11/2019

ANSWERS

PHYSICS		CHEMISTRY		MATHEMATICS	
1.	(A, B, C, D)	19.	(B, C, D)	37.	(B, C)
2.	(A, B, C)	20.	(A, B, C)	38.	(A, B)
3.	(A, B, C)	21.	(A, D)	39.	(A, D)
4.	(B, C, D)	22.	(A, B, C, D)	40.	(A, B, D)
5.	(A, C, D)	23.	(B, C)	41.	(A, C)
6.	(B, C)	24.	(B, C, D)	42.	(B, D)
7.	(15)	25.	(28)	43.	(06)
8.	(03)	26.	(22)	44.	(20)
9.	(12)	27.	(06)	45.	(16)
10.	(15)	28.	(55)	46.	(08)
11.	(24)	29.	(23)	47.	(03)
12.	(02)	30.	(32)	48.	(20)
13.	(51)	31.	(28)	49.	(15)
14.	(12)	32.	(40)	50.	(02)
15.	(C)	33.	(C)	51.	(C)
16.	(B)	34.	(A)	52.	(C)
17.	(A)	35.	(B)	53.	(B)
18.	(B)	36.	(D)	54.	(D)

HINTS & SOLUTIONS

PART - I (PHYSICS)

Answer (A, B, C, D) 1.

Hint : Uniform motion.

Sol. : For uniform motion in one direction values speed, of average speed, instantaneous magnitude of average velocity, magnitude of instantaneous velocity, all happens to be same.

2. Answer (A, B, C)

> Hint : If A remains stationary, then net force on A by plane is in vertically upward direction.

> Sol. : If A remains stationary, then net force on A is in vertically upward direction. So, mass B will also experience the force because of A in vertically downward direction only, hence both of mass A and B will remain stationary.

For equilibrium of *B*, horizontal force will be zero.

 $\Rightarrow N \sin\theta = f_r \cos\theta$

And if B starts moving, then N force should be less than $mg \cos\theta$.

3. Answer (A, B, C)

Hint :
$$v = \sqrt{4a^2 + b^2}$$

Sol. : Angle between acceleration vector and velocity vector is $\frac{\pi}{2}$.

Speed at any time $|\vec{v}| = \sqrt{4a^2 + b^2}$

$$\therefore \quad T = \frac{2\pi}{2} = \pi \text{ s}$$
$$\therefore \quad S = \pi \sqrt{4a^2 + b^2}$$

4. Answer (B, C, D)

> Hint : Motion will be symmetrical about the vertical line.

Sol. : Motion will be symmetrical about the vertical line. So from 16.45 m to maximum height, the particle will take 2 s.

:. In 2 s,
$$h_1 = \frac{1}{2} \times 10 \times 2 \times 2 = 20 \text{ m}$$

So, maximum height = 16.45 + 20 = 36.45 m Speed of projection \Rightarrow $v^2 = 2 \times 10 \times 36.45 = 729$

$$\Rightarrow$$
 v = 27 m/s and T = $\frac{2u}{g}$ = 5.4 s

5. Answer (A, C, D)

> **Hint :** If $f_r = \mu N$, from there onwards the particle will start sliding.

> **Sol.** : For $\mu_1 = 0.8$, $\mu_2 = 0.8$, both of the body shall not have any tendency to move so there will not be any tension in the string.

> And for $\mu_1 = 0.5 = \mu_2$, both of the body shall have same acceleration along the plane. So, yet again there will not be any tension in the string.

> In case if $\mu_1 = 0.4$ and $\mu_2 = 0.8$, the acceleration of the system

$$a_{0} = \frac{\left(150 \times \frac{3}{5}\right) - \left(\frac{4}{10} \times 50 \times \frac{4}{5}\right) - \left(\frac{6}{10} \times 10 \times 10 \times \frac{4}{5}\right)}{15}$$
$$\Rightarrow a_{0} = \frac{90 - 16 - 48}{15} = \frac{26}{15}$$

15

15

Now, FBD of (m_1)

$$\Rightarrow 50 \times \frac{3}{5} - \frac{4}{10} \times 50 \times \frac{4}{5} - T = 5 \times \frac{26}{15}$$
$$\Rightarrow 30 - 16 - \frac{26}{3} = T$$

$$\Rightarrow T = \frac{16}{3} N \Rightarrow \frac{42 - 26}{3} = T$$

Answer (B, C) 6. Hint : For constant acceleration,

$$s = \frac{1}{2}at^2; \quad v = u + at$$

Sol. :
$$v_1 = \alpha t_1$$

Also, $\alpha t_1 - \beta(t - t_1) = 0$
 $\therefore \quad t_1 = \frac{\beta t}{\alpha + \beta} \text{ and } t - t_1 = \frac{\alpha t}{(\alpha + \beta)}$
 $\therefore \quad v_1 = \alpha t_1 = \frac{\alpha \beta \cdot t}{\alpha + \beta}$
Also, $s = s_1 + s_2 = \frac{1}{\alpha} \frac{\alpha \cdot \beta^2 t^2}{\alpha + \beta} + \frac{1}{\alpha} \frac{\beta \cdot \alpha^2 t^2}{\beta + \alpha^2 t^2}$

Also,
$$s = s_1 + s_2 = \frac{1}{2} \frac{\alpha \cdot \beta t}{(\alpha + \beta)^2} + \frac{1}{2} \frac{\beta \cdot \alpha t}{(\alpha + \beta)^2}$$

$$\therefore \quad s = \frac{1}{2} \frac{\alpha \beta \cdot t^2 (\alpha + \beta)}{(\alpha + \beta)^2}$$

$$\Rightarrow s = \frac{1}{2} \frac{\alpha \beta \cdot t^2}{(\alpha + \beta)}$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

7. Answer (15)

Hint : Just after cutting the string, force on B is 90 N.

Sol. : Before cutting the string, force on B is

 \therefore T = 90 N

So, just after cutting the string resulting force on B is 90 N.

:
$$a_0 = \frac{90}{6} = 15 \text{ m/s}^2$$

Answer (03) 8.

Hint : $2F = mg \sin\theta + \mu mg \cos\theta$

$$F = mg \sin\theta - \mu mg \cos\theta$$

Sol. :
$$2F = mg \sin\theta + \mu mg \cos\theta$$

 $F = mg \sin\theta - \mu mg \cos\theta$

 \therefore and $\mu = \tan \phi$

Now, $2mg\sin\theta - 2\mu mg\cos\theta = mg\sin\theta + \mu mg\cos\theta$

 \Rightarrow mg sin θ = 3 μ mg cos θ \Rightarrow sin θ = 3 μ cos θ

$$\therefore \quad \tan\theta = 3\tan\phi \implies \frac{\tan\theta}{\tan\phi} = 3$$

Answer (12) 9.

Hint :
$$\vec{a}_{P, qr} = \vec{a}_{P, M} + \vec{a}_{M, g}$$

Sol.:

 $\vec{a}_{Par} = \vec{a}_{P.M} + \vec{a}_{M.ar}$

: String is fixed so load P will slide on wedge with an acceleration a_0 only.

$$\vec{a}_{pgr} = (a_0 - a_0 \cos \theta)\hat{i} - a_0 \sin \theta\hat{j} = a_0 \frac{2}{5}\hat{i} - a_0 \frac{4}{5}\hat{j}$$

$$\therefore \quad |\vec{a}| = \frac{2a_0}{5}\sqrt{4+1} = \frac{2}{5} \times 6\sqrt{5} \cdot \sqrt{5} = 12$$

10. Answer (15)

Hint : Finally, at the time of striking the ground the velocity vector will be perpendicular to initial direction.

Sol. : Its a projectile motion with initial speed $|\vec{u}| = 75\sqrt{2}$ m/s and angle 45°.

And acceleration is in -ve y-direction as a = g = -10j.

So, definitely total time of flight T will be the time instant when its velocity will be perpendicular to its 'initial velocity'.

$$\therefore \quad t = T = \frac{2u\sin\theta}{g} = \frac{2 \times 75\sqrt{2} \times 1}{\sqrt{2} \times 10}$$

11. Answer (24)

 \Rightarrow

Hint : $m_1 \omega_0^2 R_1 - \mu m_1 g - m_2 \omega_0^2 R_2 - \mu m_2 g = 0$

$$m_{1}\omega_{0}^{2}R_{1} - \mu m_{1}g - m_{2}\omega_{0}^{2}R_{2} - \mu m_{2}g = 0$$

$$\Rightarrow 8\omega_{0}^{2}(1) - 2 \times \omega_{0}^{2} \cdot \frac{1}{2} = \mu g(10)$$

$$\Rightarrow 7\omega_0^2 = \frac{7}{10} \times 10 \times 10 \Rightarrow \omega_0^2 = 10$$

$$\underbrace{\frac{T}{4\mu m,g}}{} \longrightarrow m_{e}\omega_{0}^{2}R_{1}$$

$$\Rightarrow 8 \times (1) \times 10 = T + \frac{7}{10} \times 8 \times 10$$
$$\Rightarrow 80 - 56 = T$$

$$\Rightarrow$$
 T = 24 N

12. Answer (02)

Hint & Sol. : $a_{\tau} = \alpha L$

$$\mu\sqrt{\alpha^2 L^2 + g^2} = \omega^2 L$$

$$\omega = \alpha t$$

13. Answer (51) Hint : Displacement = Area under v-t curve

Sol.:
$$\therefore |\vec{r}| = (8 \times 6) + \left(\frac{1}{2} \times 2 \times 8\right) - \left(\frac{1}{2} \times 2 \times 5\right)$$

 $\Rightarrow |\vec{r}| = 48 + 8 - 5 = 51$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2021 Test - 1A (Paper-2) (Code-H)_(Hints & Solutions)

14. Answer (12)

If $v \sin 30^\circ = 10 \sin 37^\circ$, then Shyam collides with Ram.

IS

$$\therefore \quad \frac{v}{2} = 10 \times \frac{3}{5} \quad \Rightarrow \quad v = 12 \text{ m/s}$$

15. Answer (C)

Hint : If
$$f_r = 0$$
, then $mg \frac{3}{5} = m\omega_0^2 R \frac{4}{5}$

Sol. : For particular speed when no friction force is acting $mg \times \frac{3}{5} = m\omega_0^2 \cdot R \cdot \frac{4}{5}$

$$\Rightarrow \frac{10 \times 3}{5} = \omega_0^2 \times \frac{2 \times 4}{5}$$
$$\Rightarrow \omega_0^2 = \frac{30}{8} \Rightarrow \omega_0 \simeq 1.94 \text{ rad/s}^2$$

So, if ω is higher than ω_0 , the friction force will act downward along the plane and if ω is less than ω_0 , then friction force will act upward along the plane. Now, if ω_1 is the maximum value of ω , when the mass will not skid, then

$$mg\frac{3}{5} + \mu N = m\omega^2 R \cos\theta$$

$$N = mg\frac{4}{5} + m\omega^2 R \sin\theta = \left(mg\frac{4}{5} + m\omega^2 \times 2 \times \frac{3}{5}\right)$$

$$\therefore mg\frac{3}{5} + \frac{4}{10}mg\frac{4}{5} + \frac{4}{10}m\omega^2 \times \frac{6}{5} = m\omega^2 \times 2 \times \frac{4}{5}$$

$$\Rightarrow 3g + \frac{16g}{10} = \omega^2(8 - 2.4) \Rightarrow \omega^2 = \frac{(30 + 16)}{8 - 2.4}$$

 ω_{max} = 2.86 rad/s

$$\therefore \quad \text{Similarly} \ \ \omega_{\text{min}} = \sqrt{\frac{30 - 16}{8 + 2.4}} = 1.16 \text{ rad/s}$$

So, finally if ω is less than 1.16 rad/s the mass will skid downward and if ω is greater than 2.86, then mass will skid upward along the plane. And in between the range of ω in 1.16 < ω < 2.86, the mass will remain stationary with respect to wedge.

Answer (B)
 Hint : Constraint motion
 Sol. :

For (A),

17. Answer (A)

Hint:
$$\frac{dy}{dt} = 3 \text{ m/s};$$
 $\frac{dx}{dt} = y$
Sol.: $\frac{dy}{dt} = 3 \text{ m/s}$ \therefore $y = 3t$...(1)
 $\frac{dx}{dt} = 3t$ \therefore $x = \frac{3t^2}{2}$
And $\frac{d^2x}{dt^2} = 3$
 \therefore $x = \frac{3}{2} \cdot \left(\frac{y}{3}\right)^2 \implies x = \frac{y^2}{6}$
 \therefore $6(1) = 2y \frac{dy}{dx} \implies \frac{dy}{dx} = \frac{3}{y}$
At $y = 3 \text{ m}, \frac{dy}{dx} = \tan \theta = 1 \therefore \theta = 45^\circ$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

$$|\vec{a}| = \frac{d^2 x}{dt^2} = 3 \text{ m/s}^2$$

$$\therefore |a_n| = \frac{3}{\sqrt{2}}, |\vec{a}_z| = \frac{3}{\sqrt{2}}$$

$$x (\text{at } y = 4 \text{ m}) = \frac{4 \times 4}{6} = 8 / 3$$

At $y = 4 \text{ m}$; $t = 4/3$ \therefore $v_x = 3 \times 4/3 = 4 \text{ m/s}$
 $\therefore |\vec{v}| = 5 \text{ m/s}$
Answer (B)

Hint: Constraint motion **Sol.** : Speed of $R = v_1 = 3$ m/s Speed of $Q = v_1 + 2v_2 = 3 + 4 = 7 \text{ m/s}$ Speed of $P = 3v_1 + 2v_2 = 9 + 4 = 13$ m/s Speed of *P* w.r.t. $A = 3v_1 + 2v_2 - v_1 = 10$ m/s

PART - II (CHEMISTRY)

19. Answer (B, C, D)

18.

20. Answer (A, B, C)

Hint : Time taken to complete 1 revolution = $\frac{2\pi r}{r}$ Sol.: Time taken to complete one revolution in an orbit, $T \propto \frac{n^3}{7^2}$ $T_2(H) \propto \frac{(2)^3}{(1)^2} \propto 8;$ $T_4(He^+) \propto \frac{(4)^3}{(2)^2} \propto 16$ $\therefore \frac{T_2(H)}{T_4(He^+)} = \frac{8}{16} = \frac{1}{2}$ $\frac{n_2(H)}{n_4(H)} = \frac{2}{4} = \frac{1}{2}$ Radius of nth orbit, $r_n = \left(\frac{n^2}{z}\right)(r_1)_H$

 $r_{2}(H) = \frac{(2)^{2}}{1}r_{1}(H);$ $r_{4}(He^{+}) = \frac{(4)^{2}}{2}r_{1}(H) = 8r_{1}(H)$ $\frac{r_2(H)}{r_4(He^+)} = \frac{4}{8} = \frac{1}{2}$

Energy of electron in nth orbit, $E_n = -13.6 \frac{Z^2}{r^2} eV$

$$E_{2}(H) = -13.6 \frac{(1)^{2}}{(2)^{2}} = -\frac{13.6}{4} \text{ eV}$$
$$E_{4}(He^{+}) = -13.6 \frac{(2)^{2}}{(4)^{2}} = -\frac{13.6}{4} \text{ eV}$$
$$E_{4}(H)$$

 $\therefore \quad \frac{-2(H)}{E_{4}(He^{+})} = 1$

21. Answer (A, D) Hint : Each P is *sp*³ hybridised.

22. Answer (A, B, C, D)

Hint: Number of moles = Molarity × volume (L) Sol.: Let the volumes of 0.1 M Fe₂(SO₄)₃ and 0.1 M Al₂(SO₄)₃ solutions to be mixed be V₁ and V₂ respectively.

Number of moles of cations = $0.2V_1 + 0.2V_2$

$$= 0.2(V_1 + V_2)$$

Number of moles of anions = $0.3V_1 + 0.3V_2$ $= 0.3 (V_1 + V_2)$

 $\frac{\text{Moles of cations}}{\text{Moles of anions}} = \frac{0.2(V_1 + V_2)}{0.3(V_1 + V_2)} = \frac{2}{3}$

So, molar ratio of cations to anions will be always 2:3 irrespective of the values of V1 and V2.

23. Answer (B, C)

Hint : Mass of air displaced = V x d

Sol. : Weight of payload = 80×10^3

Let number of balloons required be x.

$$80 \times 10^3 + 0 + 100x = \frac{nRT}{P}x \times 1.25$$

x = 26.8

∴ Number of balloon = 27 and 30

24. Answer (B, C, D) Hint : B.O. of CO = 3B.O. of $CO^+ = 3.5$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 1A (Paper-2) (Code-H)_(Hints & Solutions)

Sol.:
$$\frac{N_2}{N_2^+}$$
 $\frac{BO}{2.5}$. Bond length $\propto \frac{1}{Bond order}$
NO⁺ NO⁻
BO $\rightarrow 3$ BO $\rightarrow 2$
O₂ BO = 2 O₃ BO $\rightarrow 1.5$

25. Answer (28)

Hint : Excitation energy =
$$13.6 \left[\frac{1}{(1)^2} - \frac{1}{n^2} \right]$$

Sol. : Energy absorbed by H-atoms = 13.3875 eVLet the electron of H-atom be excited from ground state to nth orbit.

$$\therefore \quad 13.3875 = 13.6 \left[\frac{1}{(1)^2} - \frac{1}{(n)^2} \right]$$

On solving, n = 8

Total number of lines in the spectrum of hydrogen

$$= \sum (8-1) = \sum (7) = 28$$

26. Answer (22)

Hint : KE of iodine atoms = $\frac{1}{2}$ [IE – BE]

Sol. : Incident energy (IE) given to I2 molecule

$$=\frac{6.6\times10^{-34}\times3\times10^8}{4500\times10^{-10}}=4.4\times10^{-19} \text{ J}$$

Minimum energy required to dissociate I2 molecule

$$=\frac{240\times1000}{6\times10^{23}}=4.0\times10^{-19}\,J$$

KE of 2 iodine atoms = $(4.4 - 4.0)10^{-19}$

KE / lodine atom = $2.0 \times 10^{-20} = x \times 10^{y}$

$$x + |y| = 2 + |-20| = 22$$

27. Answer (06)

Hint : For Be, Mg and He, EGE is positive.

28. Answer (55)

Hint : Moles of $CaCl_2$ = Moles of $CaCO_3$ = Moles of CaO

Sol. : Mass of mixture of CaCl_2 and NaCl = 3.70 gm

$$CaCl_{2} + Na_{2}CO_{3} \longrightarrow CaCO_{3} + 2NaCl$$

$$CaCO_{3} \xrightarrow{\Delta} CaO_{3} + CO_{2}$$

$$0.84 \text{ gm}$$

Moles of CaCl₂ = Moles of CaCO₃ = Moles of CaO

$$=\frac{0.84}{56}=0.015$$

Mass of $CaCl_2 = 0.015 \times 111$ gm

% of CaCl₂ =
$$\frac{0.015 \times 111 \times 100}{3.70} = 45\%$$

 \therefore % of NaCl in the given mix = 55%

29. Answer (23)

Hint: Bohr's model

Sol. : For H-atom, transition $n_2 \rightarrow n_1$, $\lambda = 92 \text{ nm}$

$$\frac{1}{92} = R_{\rm H} (1)^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] \qquad \dots (i)$$

For He+ ion,

$$\frac{1}{\lambda} = R_{\rm H}(2)^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] \qquad \dots (ii)$$

Solving (i) and (ii), we get

$$\lambda = \frac{92}{4} = 23 \text{ nm}$$

30. Answer (32)

Hint : Eka silicon is Germanium.

Sol. : Atomic number of eka-silicon (Germanium) = 32

31. Answer (28)

Hint : Increase in weight is due to oxidation of FeO, present in the mixture, to Fe_2O_3 .

Sol.: Let the mass of FeO in 100 gm mixture of FeO and Fe_2O_3 be x gm. On heating the entire amount of FeO is converted into Fe_2O_3 .

 $4 FeO + O_2 \longrightarrow 2 Fe_2O_3$

Percentage increase in weight = $\frac{32 \times x}{4 \times 72} = 8$

x = 72 gm

- \therefore Percentage of Fe₂O₃ in the given mixture = 28%
- 32. Answer (40)

Hint & Sol. :

 $\begin{array}{ll} \mathsf{N}_2 & \Rightarrow \ \mathsf{u} = \mathsf{10} \\ \mathsf{O}_2 & \Rightarrow \ \mathsf{v} = \mathsf{10} \\ \mathsf{CN}^- \Rightarrow \ \mathsf{w} = \mathsf{10} \\ \mathsf{NO}^+ \Rightarrow \ \mathsf{x} = \mathsf{10} \end{array}$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

33. Answer (C)

Hint : Emission spectrum of H-atom and H-like species has lines in the UV region, IR and far IR region.

Sol. :

$$Z = 39, n_1 = 5 \text{ and } n_2 = 13$$

$$\frac{1}{\lambda} = R_H (39)^2 \left[\frac{1}{(5)^2} - \frac{1}{(13)^2} \right]; \ \lambda = \frac{25}{1296 R_H}$$

$$Z = 48, n_1 = 4 \text{ and } n_2 = 5$$

$$\frac{1}{\lambda} = R_{\rm H} (48)^2 \left[\frac{1}{(4)^2} - \frac{1}{(5)^2} \right]; \ \lambda = \frac{25}{1296 R_{\rm H}}$$

$$Z = 2$$
, $n_1 = 2$ and $n_2 = 3$

$$\frac{1}{\lambda} = R_{H}(2)^{2} \left[\frac{1}{(2)^{2}} - \frac{1}{(3)^{2}} \right]; \ \lambda = \frac{9}{5 R_{H}}$$

Z = 1, $n_1 = 1$ and $n_2 = 3$

$$\frac{1}{\lambda} = R_{H}(1)^{2} \left[\frac{1}{(1)^{2}} - \frac{1}{(3)^{2}} \right]; \ \lambda = \frac{9}{8 R_{H}}$$

All transitions from higher energy orbits to 4th orbit lie in 'far IR region' for H-atom.

All transitions from higher energy orbit to 2nd orbit lie in UV region except H-atom which lie in visible region.

34. Answer (A)

Hint: d_{z^2} has no planar nodes but has two angular nodes.

Sol.: Number of radial/spherical nodes in an orbital = n - l - 1

Number of planar/angular nodes in an orbital = I

Orbital d_{z^2} has two angular nodes but no planar nodes.

35. Answer (B)

Hint : Molality

$$= \frac{\text{Molarity} \times 1000}{[1000d - \text{Molarity} \times \text{Molar mass of solute}]}$$
Sol. :

NaOH solution :

Molarity =
$$\frac{6 \times 1000}{40 \times 250}$$
 = 0.6 M
Molality = 0.6 m $\left\{ \because d_{H_2O} = \frac{1 \text{ gm}}{\text{cc}} \right\}$
Mole fraction of NaOH = $\frac{0.15}{0.15 + \frac{250}{18}} = 0.01$

Glucose solution :

Molarity =
$$\frac{54 \times 1000}{180 \times 500}$$
 = 0.6 M
Molality = 0.6 m
Mole fraction of glucose = $\frac{0.30}{0.30 + \frac{500}{18}}$ = 0.01
NaOH + HCl \longrightarrow NaCl + H₂O
m mole 70 10
60 0 10 10
Molarity of excess NaOH = $\frac{60}{100}$ = 0.6 M
Benzene – Toluene mixture
Number of moles of benzene = $\frac{31.2}{78}$ = 0.4
Number of moles of benzene = $\frac{55.2}{92}$ = 0.6
Mole fraction of benzene = 0.4
Molarity of benzene in solution
= $\frac{0.4 \times 1000}{\frac{55.2}{0.87}}$ = 6.3 M
36. Answer (D)
Hint : Number of hybridised orbitals, H is given by
H = $\frac{1}{2}$ [V + M - C + A].
Sol. :
Acid Basicity No. of % of Hybridisation

π-bonds Ο of central atom 2 2 ≃ 64% sp³ 3 ≃ 64% 1 sp³ 2 2 **≃ 71%** sp² 3 OF 1 ≃ 64% sp³ OH

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

PART - III (MATHEMATICS)

37. Answer (B, C) **Hint**: $\sqrt{3} \sin x + \cos x = 2(\cos x + \cos 5x)$ $\Rightarrow \frac{\sqrt{3}}{2}\sin x - \frac{1}{2}\cos x = \cos 5x$ **Sol.**: $\sqrt{3} \sin x + \cos x = 2(\cos 5x + \cos x)$ $\Rightarrow \frac{\sqrt{3}}{2}\sin x - \frac{1}{2}\cos x = \cos 5x$ $\Rightarrow \cos 5x = \cos \left(\frac{2\pi}{3} - x\right)$ \Rightarrow 5x = 2n π ± $\left(\frac{2\pi}{2} - x\right)$, where $n \in Z$ $\Rightarrow x = \frac{n\pi}{3} + \frac{\pi}{9} \text{ or } x = \frac{n\pi}{2} - \frac{\pi}{6}$ 38. Answer (A, B) **Hint :** Put z = ki, where $k \in R$ **Sol.**: If the equation has a purely imaginary root, then z = ki; ($k \in R$) will satisfy the equation. $-k^{2}(1-i) + k(-2i+1) - 3i = m$ $\Rightarrow -k^2 + k = m$ and $k^2 - 2k - 3 = 0$ k = -1.3So, m = -2, -639. Answer (A, D) **Hint** : $[x]^2 - [x] - 20 > 0 \Rightarrow [x] \in (-\infty, -4) \cup (5, \infty)$ **Sol.**: f(x) exists if $[x]^2 - [x] - 20 > 0 \Rightarrow [x] \in (-\infty, -4) \cup (5, \infty)$ $\Rightarrow x \in (-\infty, -4) \cup [6, \infty)$ 40. Answer (A, B, D) Hint: $-\sqrt{3}x = 2y = z$ **Sol.**: $(-\sqrt{3}x)^2 + (2y)^2 + (z)^2 - (-\sqrt{3}x)(2y)$ $-(2v)(z) - (z)(-\sqrt{3}x) = 0$ $\Rightarrow -\sqrt{3}x = 2y = z = k$ (where $k \in R - \{0\}$) $\Rightarrow x = \frac{-k}{\sqrt{2}}, y = \frac{k}{2}, z = k$ So, $xy = -\frac{k^2}{2\sqrt{3}} < 0$, $yz = \frac{k^2}{2} > 0$ $x(x+y+z) = \frac{k^2}{3} - \frac{k^2}{2\sqrt{3}} - \frac{k^2}{\sqrt{3}} = k^2 \left(\frac{1}{3} - \frac{\sqrt{3}}{2}\right) < 0$ and $xy + zx = -\frac{k^2}{2\sqrt{3}} - \frac{k^2}{\sqrt{3}} < 0$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

8/10

Applying condition for common roots, $(2k - 58 - 2k + 43)(-2k^2 + 43k - k^2 + 29k)$ $= (2k + k)^2$

 $\Rightarrow 4k^2 - 120k = 0 \Rightarrow k = 0 \text{ or } 30$

 $x^2 + (k^2 - 29)x - k = 0$

 $2x^2 + (2k - 43)x + k = 0$

42. Answer (B, D)

common root.

Hint : Put z = x + iy and solve for x and y.

Sol.: Let z = x + iy

$$x^2 + y^2 - 5(x + iy) = 10i$$

$$\Rightarrow x^2 + y^2 - 5x = 0$$
 and $-5y = 10$

$$\Rightarrow$$
 y = -2 and x = 1 or 4

$$\Rightarrow z = 1 - 2i \text{ or } 4 - 2i$$

43. Answer (06)

Hint : Product of roots is negative.

Sol.:

Case 1 : One positive and one negative root $a \cdot c < 0$

$$\Rightarrow m(m^2-6m-7)<0$$

 $\Rightarrow m \in (-\infty, -1) \cup (0, 7)$

Case 2 : Two equal positive roots

 $D = 0 \cap m < 0 \Rightarrow$ no integral value of *m* exist.

44. Answer (20) Hint: $(a - b)(a^2 + b^2 + ab) = a^3 - b^3$ Sol. : $X = X = \log_2(3 - \sqrt[3]{2}) + \log_2(3^2 + (\sqrt[3]{2})^2 + 3 \cdot \sqrt[3]{2})$

 $X = \log_3(3^3 - 2) = \log_3 25$

Now, $5X \cdot \log_5 9 = 5(\log_3 25)(\log_5 9)$

$$= 5(2\log_3 5)(2\log_5 3)$$

= 20

45. Answer (16)

Hint : $x^3 - 2x^2 - 11x + 12 < 0 \cap x^2 - 2x - 48 < 0$

41. Answer (A, C)

Hint : f(x) and g(x) have a common factor.

Sol.: f(x) and g(x) both are factors of a cubic polynomial then f(x) = 0 and g(x) = 0 have a

...(i)

...(ii)

Sol.:
$$\therefore x^3 - 2x^2 - 11x + 12 < 0$$
 and
 $x^2 - 2x - 48 < 0$
 $(x - 1)(x + 3)(x - 4) < 0$ and $(x - 8)(x + 6) < 0$
 $x \in (-\infty, -3) \cup (1, 4)$ and $x \in (-6, 8)$
So, $x \in (-6, -3) \cup (1, 4)$

Integral value of x will be -5, -4, 2, 3.

- 46. Answer (08)
 - Hint : Draw graph
 - **Sol.** : If we draw the two graph |x| + |y| = 4 and |x + y| + |x y| = 5

There are 8 points of intersection.

47. Answer (03)

Hint :
$$f(x) = 1 - 2\left(\frac{x}{1+x^2}\right)$$

Sol. : $f(x) = \frac{1+x^2-2x}{1+x^2} = 1 - 2\left(\frac{x}{1+x^2}\right)$
 $\therefore x + \frac{1}{x} \in (-\infty, -2] \cup [2, \infty)$
 $\Rightarrow \frac{x^2+1}{x} \in (-\infty, -2] \cup [2, \infty)$
 $\Rightarrow \frac{x}{x^2+1} \in \left[-\frac{1}{2}, \frac{1}{2}\right]$
 $f(x) \in [0, 2]$

Number of integers in the range of *f*(*x*) is 3.48. Answer (20)

Hint:
$$\cos^2 \frac{r\pi}{7} = \frac{1}{2} \left(1 + \cos \frac{2r\pi}{7} \right)$$

Sol.: $\cos^2 \frac{\pi}{7} + \cos^2 \frac{2\pi}{7} + \cos^2 \frac{3\pi}{7}$
 $= \frac{1}{2} \left[\left(1 + \cos \frac{2\pi}{7} \right) + \left(1 + \cos \frac{4\pi}{7} \right) + \left(1 + \cos \frac{6\pi}{7} \right) \right]$

$$= \frac{1}{2} \left[3 + \left(\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} \right) \right]$$

$$= \frac{1}{2} \left[3 + \frac{\sin \frac{3\pi}{7}}{\sin \frac{\pi}{7}} \cdot \cos \frac{4\pi}{7} \right]$$

$$= \frac{1}{2} \left[3 - \frac{2 \sin \frac{3\pi}{7} \cdot \cos \frac{3\pi}{7}}{2 \sin \frac{\pi}{7}} \right]$$

$$= \frac{1}{2} \left[3 - \frac{1}{2} \right] = \frac{5}{4}$$
49. Answer (15)
Hint : $(x - 3)^2 + 2\cos^2\left(\frac{\pi x}{n}\right) = 0$
Sol. : $(x^2 - 6x + 9) + \left(1 + \cos\left(\frac{2\pi x}{n}\right)\right) = 0$
 $\Rightarrow (x - 3)^2 + 2\cos^2\left(\frac{\pi x}{n}\right) = 0$
 $\Rightarrow x = 3 \text{ and } \cos\left(\frac{\pi x}{n}\right) = 0$
 $\Rightarrow \alpha = 3 \Rightarrow \cos\left(\frac{3\pi}{n}\right) = 0$
 $\Rightarrow n = 2 \text{ or } 6$
Maximum value of $\alpha^2 + n = 15$
50. Answer (02)
Hint : $\cot\theta - \tan\theta = 2\cot2\theta$
Sol. : $\tan 55^\circ - \tan 35^\circ = \frac{\sin(55^\circ - 35^\circ)}{\cos 55^\circ \cdot \cos 35^\circ}$
 $= \frac{2\sin 20^\circ}{2\sin 35^\circ \cdot \cos 35^\circ}$
 $= \frac{2\sin 20^\circ}{\sin 70^\circ} = 2\tan 20^\circ$
And $2\cot40^\circ - \cot20^\circ + 2\tan20^\circ$
 $= (\cot20^\circ - \tan20^\circ) - \cot20^\circ + 2\tan20^\circ$
 $= \tan20^\circ$
So, $\frac{\tan 55^\circ - \tan 35^\circ}{2\cot40^\circ - \cot20^\circ + 2\tan20^\circ} = 2$
51 Answer (C)

51. Answer (C)
Hint:
$$\arg(z_1 \cdot z_2) = \arg(z_1) + \arg(z_2)$$

and $\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2021 Test - 1A (Paper-2) (Code-H)_(Hints & Solutions)

Sol. :
(P)
$$z + \overline{z} + z\overline{z}$$
 is purely real,
 $\arg(z + \overline{z} + z\overline{z})$ is 0 or π
(Q) $\arg\left(\frac{(1+\sqrt{3}i)(\sqrt{3}-i)(1+i)}{(\sqrt{3}+i)}\right)$
 $= \arg(1+\sqrt{3}i) + \arg(\sqrt{3}-i) + \arg(1+i)$
 $-\arg(\sqrt{3}+i)$
 $= \frac{\pi}{3} + \left(-\frac{\pi}{6}\right) + \frac{\pi}{4} - \frac{\pi}{6}$
 $= \frac{\pi}{4}$
(R) $\arg(z)$ may be π
(R) $\arg(z)$ may be π
 $z_{1}(-3-i)$
(S) $z_{1} = iz_{2}$
 $\Rightarrow \arg(z_{1}) = \frac{\pi}{2} + \arg(z_{2})$...(i)
also, $\arg(z_{1}z_{2}) = \frac{2\pi}{3}$
 $\arg(z_{1}) + \arg(z_{2}) = \frac{2\pi}{3}$...(ii)
(i) + (ii),
 $\arg(z_{1}) = \frac{7\pi}{12}$
Answer (C)
Hint : $f(x) = -2(x^{2} + \sqrt{3}x + 1)(x^{2} - \sqrt{3}ax + 1)$
Sol. : $f(x) = (a-1)(x^{2} + \sqrt{3}x + 1)^{2} - (a + 1)$
 $[(x^{2} + 1)^{2} - 3x^{2}]$
 $= (a-1)(x^{2} + \sqrt{3}x + 1)^{2} - (a + 1)$
 $(x^{2} - \sqrt{3}ax + 1)(x^{2} - \sqrt{3}ax + 1)$
 $= -2(x^{2} + \sqrt{3}x + 1)(x^{2} - \sqrt{3}ax + 1)$
 $\therefore x^{2} + \sqrt{3}x + 1 > 0$
(P) If $f(x) < 0 \Rightarrow x^{2} - \sqrt{3}ax + 1 < 0 \Rightarrow a \in \phi$
(R) If $f(x) = 0$ has real roots, then
 $x^{2} - \sqrt{3}ax + 1 = 0$ has real roots

52.

 $3a^2 - 4 > 0$ $a \in \left(-\infty, -\frac{2}{\sqrt{3}}\right) \cup \left(\frac{2}{\sqrt{3}}, \infty\right)$ (S) If f(x) = 0 has all roots imaginary, then $x^2 - \sqrt{3}ax + 1 = 0$ has imaginary roots (:: $x^2 + \sqrt{3}x + 1 = 0$ already has imaginary roots) $a \in \left(-\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}\right)$ Sum of all roots = $S = \sqrt{3}a - \sqrt{3}$ $S \in \left(-2 - \sqrt{3}, 2 - \sqrt{3}\right)$ 53. Answer (B) **Hint**: sin2A + sin2B + sin2C = 4sinAsinBsinC $\cos 2A + \cos 2B + \cos 2C$ $= -1 - 4\cos A\cos B\cos C$ $\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C$ Sol.: (P) $\therefore \cos 2A + \cos 2B + \cos 2C$ $= -1 - 4\cos A\cos B\cos C$ $=-\frac{\sqrt{3}+1}{2}$ (Q) $\sin^2 A + \sin^2 B + \sin^2 C$ $=\frac{3-(\cos 2A+\cos 2B+\cos 2C)}{2}$ $=\frac{7+\sqrt{3}}{4}$ (R) $\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C$ $=\frac{3+\sqrt{3}}{\sqrt{3}-1}$ (S) $\sin 2A + \sin 2B + \sin 2C = 4\sin A \sin B \sin C$ $=\frac{3+\sqrt{3}}{2}$ 54. Answer (D) **Hint** : Draw graph of y = f(x)**Sol.** : y = f(x)(3, 3)(-1, 3)(1, 1) (1,0) (-4,0) (6, 0)

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456