All India Aakash Test Series for JEE (Advanced)-2020

TEST - 1A (Paper-2) - Code-E

Test Date : 13/10/2019

ANSWERS						
	PHYSICS		CHEMISTRY		MATHEMATICS	
	1.	(A, D)	19.	(A, B, C)	37.	(A, C)
	2.	(A, B, C, D)	20.	(A, B)	38.	(A, B, C, D)
	3.	(B, D)	21.	(A, B)	39.	(A, C)
	4.	(A, D)	22.	(A, C)	40.	(A, B, D)
	5.	(A, C, D)	23.	(A, B, C)	41.	(A, C, D)
	6.	(A, B, C)	24.	(B, C, D)	42.	(A, B, C, D)
	7.	(12)	25.	(32)	43.	(16)
	8.	(65)	26.	(80)	44.	(41)
	9.	(10)	27.	(03)	45.	(98)
	10.	(72)	28.	(23)	46.	(17)
	11.	(18)	29.	(90)	47.	(21)
	12.	(17)	30.	(35)	48.	(64)
	13.	(03)	31.	(25)	49.	(24)
	14.	(27)	32.	(33)	50.	(01)
	15.	(D)	33.	(A)	51.	(C)
	16.	(C)	34.	(D)	52.	(B)
	17.	(D)	35.	(D)	53.	(A)
	18.	(B)	36.	(B)	54.	(B)

HINTS & SOLUTIONS

PART - I (PHYSICS)

1. Answer (A, D)

Hint : At F = 10 N cone is just about to topple.

- Solution :
- $\Rightarrow N_1 = 0$
 - $N_2 = 10 \text{ N}$
- 2. Answer (A, B, C, D)

Hint : Momentum in horizontal direction and mechanical energy will be conserved.

Solution :

$$mgl = 2 \times \frac{1}{2}mv^{2}$$

$$\Rightarrow v = \sqrt{gl}$$

$$T_{ms} = (mg) + (m)\left(\frac{4gl}{l}\right)$$

$$= 5mg$$

3. Answer (B, D)

Hint : $\vec{F} = \frac{d\vec{\mu}}{dt}$

Solution :

$$t = 2\sqrt{\frac{l}{g}}, \quad F = \left(2\sqrt{gl}\right)\left(\frac{2m}{l}\sqrt{gl}\right) + mg$$
$$F = \left(\frac{m}{l}\right)(4gl) + mg = 5mg$$
$$t = \sqrt{\frac{2\left(\frac{3l}{2}\right)}{g}} = \sqrt{\frac{3l}{g}}, \quad F = \frac{Mg}{2} + \left(\sqrt{2g\frac{3l}{2}}\right)\frac{M}{l}\sqrt{3gl}$$
$$F = \frac{Mg}{2} + \left(\frac{M}{l}\right)(3gl)$$
$$= \left(\frac{7Mg}{2}\right)$$

4. Answer (A, D)

Hint : F_{ST} (Vertical component) = weight of liquid. **Solution** :

By geometry

$$\frac{r}{R} = \cos\left(\theta + \frac{\alpha}{2}\right) \qquad \Rightarrow \qquad R = \frac{r}{\cos 60^{\circ}} = 2r$$

Now
$$P_0 - \frac{2S}{R} + h\rho g = P_0$$

$$\Rightarrow \quad h = \frac{2S}{R\rho g} = \frac{2 \times 10^{-2}}{2 \times 10^{-3} \times 10^3 \times 10^3}$$

$$H = 10^{-3} \text{ m} = \left(\frac{1}{10} \text{ cm}\right)$$

Answer (A, C, D)
 Hint : Sphere will perform SHM.
 Solution :

$$_{p} = I_{p}\alpha$$

τ

$$\left(\frac{9kx}{2}\right)\frac{3R}{2} + (3kx)2R = \left(\frac{7}{5}mp^2\right)\frac{9}{R}$$
$$\Rightarrow \quad \omega = \sqrt{\frac{255k}{28M}} = 1 \text{ rad/s}, \ T = 2\pi \text{ s}$$

6. Answer (A, B, C)

Hint : Frictional force has tendency to stop sliding.

Solution :

If $\alpha > 45^\circ$

- \Rightarrow $F_1 \sin \alpha > F_2 \cos \alpha$
- \Rightarrow Friction will be along Q
- 7. Answer (12)

Hint:
$$X = A\cos\left(\frac{2\pi}{T}t\right)$$

Solution :

$$X = A\cos\left(\frac{2\pi}{T}t\right)$$

At *t* = 2

$$X = \frac{A\sqrt{3}}{2}$$

8. Answer (65)

Hint : v - t graph will be like this

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 1A (Paper-2) (Code-E)_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2020

$$\Rightarrow$$
 200 + 100 + 20 (*t*) = 1000

$$\Rightarrow$$
 t = 65 s

9. Answer (10)

Hint : $\Sigma \vec{F} = 0$ and $\vec{\tau} = 0$

Solution :

$$N = Mg + \frac{F/2}{Mg} \xrightarrow{P} Mg$$

$$= 0$$

$$F = 0$$

$$\left(Mg + \frac{F}{2}\right)L\sin\theta = Mg\frac{L}{2}\sin\theta + fL\cos\theta$$
$$\Rightarrow F = 10 \text{ N}$$

10. Answer (72)

 τ_p

Hint : $I = I_1 + I_2$

Solution :

$$I = \left(\frac{1}{6}\right)(2M)64 + \frac{1}{6}(M)16$$

= 72

11. Answer (18)

Hint :

 $12t-2a_A-a_0=0$

Solution :

$$\Rightarrow a_{A} = \left(6t - \frac{a_{0}}{2}\right)$$
$$\int_{0}^{v} dv = \int_{0}^{t} \left(6t - \frac{a_{0}}{2}\right) dt$$
$$\Rightarrow v = 3t^{2} - \frac{a_{0}}{2}t$$
$$\Rightarrow v = 0, \Rightarrow 3t = \frac{a_{0}}{2}$$
$$\Rightarrow a_{0} = 6t$$

12. Answer (17)

Hint : Net force on free surface is always perpendicular to surface.

Solution :

$$a_0 = 6 \text{ m/s}^2$$

$$g\sin\theta = a_0\cos(\theta + 37^\circ)$$

$$\tan \theta = \frac{6}{17}$$

Hint :
$$P_B A = F_{centre}$$

Solution :

$$\int_{0}^{P_{B}} (dp) A = \int_{\frac{l}{2}}^{l} \rho A \omega^{2} x dx$$

$$P = \frac{\rho\omega^2}{2} \left(\frac{3l^2}{4}\right)$$
$$= \frac{1000 \times 100}{2} \times \frac{3}{4} (\sqrt{8})$$

14. Answer (27)

Hint :
$$T = \frac{F}{2\sin\theta}$$

Solution :

$$\frac{T}{A} = \frac{F}{2A\sin\theta}$$

$$\frac{\Delta I}{I} = \frac{\sqrt{d^2 \times I^2} - I}{I}$$

$$\left(1\times\frac{d^2}{l^2}\right)^2 - 1 = \frac{d^2}{2l^2}$$

$$\Rightarrow d = I \left(\frac{F}{\pi r^2 Y}\right)^{\frac{1}{3}}$$
$$d = 8100 \left(\frac{10^{-2}}{\pi r^2 Y}\right) = 27$$

$$d = 8100 \left(\frac{10^2}{3} \right) = 27 \text{ cm}$$

15. Answer (D)

Hint : Apply conversation of momentum. Solution :

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 1A (Paper-2) (Code-E)_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2020

$$Mv_{0} = Mv_{cm} + Mv_{0}$$

$$\Rightarrow v_{cm} + v = v_{0} \qquad \dots(i)$$

$$|J| = M(v_{0} - v)$$

$$M(v_{0} - v)R = \left(\frac{MR^{2}}{2}\right)\left(\frac{v - v_{cm}}{R}\right) \qquad \dots(ii)$$

$$\Rightarrow 2v_{0} - 2v = v - v_{cm}$$

$$\Rightarrow 3v - v_{cm} = 2v_{0} \qquad \dots(iii)$$
From (i) and (ii)

$$v = \frac{3v_{0}}{4} = 3 \text{ m/s}$$

$$v_{cm} = \frac{v_{0}}{4} = 1 \text{ m/s}$$

$$\omega = \frac{v_{0}}{2R} = 2 \text{ rad/s}$$

$$J = M\left(v_{0} - \frac{3v_{0}}{4}\right) = \left(\frac{Mv_{0}}{4}\right)$$

$$= \frac{4 \times 4}{4} = 4$$

16. Answer (C)

Hint : An ideal liquid is incompressible as well as non-viscous.

4

Solution :

v remains constant in case of incompressible liquid

$$\Rightarrow \rho = \frac{m}{v} = \text{constant}$$

17. Answer (D)

Hint : Use formula of gravitational potential.

Solution :

(A)
$$V_P = \frac{-2GM}{3R} - \frac{GM}{2R} = -\frac{7}{6} \frac{GM}{R}$$

(B) $V = -\frac{GM}{2R^3} \left(3R^2 - \frac{R^2}{4} \right) = -\frac{11}{8} \frac{GM}{R}$
(C) $V = -\frac{GM}{5R}$

18. Answer (B)

Hint:
$$0 \le f_s \le \mu_s N$$
 $F = 2 N$

Solution :

$$f_1 = f_2 = 2, a_1 = a_2 = 0$$

at $F = 6 N$
 f_1 (required) = 5 N

 $\therefore a_1 = a_2 = 1 \text{ m/s}^2$ for F > 6 N

 $a_1 \neq a_2$

PART - II (CHEMISTRY)

- 19. Answer (A, B, C)
 - **Hint** : $q + w = \Delta U$

Both q and w are path functions but ΔU is state function.

Solution :

Free expansion is simultaneously adiabatic as well as isothermal.

20. Answer (A, B)

Hint : The given graph represents negative deviation from Raoults law.

Solution :

When $X_Q = 0$, $X_P = 1$ So $Z = P_n^{\circ}$

Relative volatility can't be predicted on the basis of the given data.

21. Answer (A, B)

Hint : Frequency factor (A) = pZ

where Z is the number of collisions per unit volume per unit time, and p is the probability or steric factor.

Solution :

For Arrhenius theory, p < 1.

Experimentally, p may be less than, greater than or equal to 1.

22. Answer (A, C)

Hint : For endothermic reaction, K increases with temperature.

Solution :

For exothermic reaction, K decreases with temperature.

23. Answer (A, B, C)

Hint:
$$\left(P + \frac{a}{V^2}\right)(V - b) = RT$$

Solution :

When a = 0, PV + Pb = RTStraight line When b = 0, $\left(P + \frac{a}{V^2}\right)(V) = RT$

 \Rightarrow PV + $\frac{a}{V}$ = RT Straight line

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 1A (Paper-2) (Code-E)_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2020

When a = b = 0PV = RTSo PV versus P is a straight line parallel to pressure axis. 24. Answer (B, C, D) Hint : Conservation of mass and charge. Solution : R is proton S is neutron T is positron 25. Answer (32) Hint : Degeneracy of nth shell in H atom is equal to n^2 . So, Y = 16 Solution : In 4th shell \rightarrow 4s, 4p, 4d and 4f \therefore Number of e⁻ with m_s = $+\frac{1}{2}$ = 16 26. Answer (80) **Hint :** V_{solvent} = V_{solution} Solution : Let 1 L solution be taken So, moles of solute = 3.2and mass of solvent = 1000d $\therefore \quad m = \frac{3.2 \times 1000}{1000d} = 4$ $\Rightarrow \frac{3.2}{d} = 4$ \Rightarrow d = 0.8 ∴ 100d = 80 27. Answer (03) Hint : (1) \rightarrow H₂ (2) \rightarrow He (3) $\rightarrow N_2$ (4) \rightarrow CO₂ Solution : x = 1 y = 3xy = 328. Answer (23) **Hint :** Density = $\frac{Mass}{Volume}$ Solution : $12 = \frac{2 \times (x)}{N_0 64 \times 10^{-24}}$ where x = atomic mass

$$\Rightarrow x = \frac{12 \times N_0 \times 64 \times 10^{-24}}{2}$$

$$= 230.4 \text{ gm}$$
So, $\frac{x}{10} = 23.04$
29. Answer (90)
Hint : $\frac{dE}{dT} = \frac{\Delta S}{nF}$

$$\Rightarrow \Delta S = -2 \times 10^{-6} \times 2 \times 96500$$

$$= -0.386 \text{ J/mol K}$$
Solution :

$$\Delta G = \Delta H - T\Delta S$$

$$-2(96500) (1.4) = \Delta H - 300 (-0.386)$$

$$-270200 = \Delta H + 115.8$$

$$\Delta H = -270.315.8 \text{ J/mol}$$

$$\Delta H = -270.32 \text{ KJ/mol}$$

$$\therefore X = 270.32$$
30. Answer (35)
Hint : PV⁴ = Constant
TV³ = Constant
Solution :

$$C = C_v - \frac{R}{n-1}$$

$$= \frac{3R}{2} - \frac{R}{3}$$

$$= \frac{7R}{6}$$

$$\therefore X = \frac{7}{6}$$

$$30X = 35$$
31. Answer (25)
Hint :
P(g) \Rightarrow Q(g) + R(g)
$$1-x-z \quad x-y \quad x+y+z$$

$$Q(g) + S(g) \Rightarrow R(g) + T(g)$$

$$(x-y) \quad (1-y+z) \quad (x+y+z) \quad y-z$$

$$P(g) + T(g) \Rightarrow R(g) + S(g)$$

where x = atomic mass (1-x-z) (y-z) (x+y+z) (1-y+z)**Aakash Educational Services Limited** - *Regd. Office* : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 1A (Paper-2) (Code-E)_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2020 35. Answer (D) Solution : Hint : At equilibrium, N₂: HOMO is $\sigma 2p_{z}$, LUMO is $\pi * 2p_{z} = \pi * 2p_{y}$ x + y + z = 1...(i) O_2^- : HOMO is $\pi * 2p_x = \pi * 2p_y$, LUMO is $\sigma * 2p_z$ x - y = y - z...(ii) $1 - y + z = \frac{5}{6}$ Solution : ...(iii) C_2 : HOMO is $\pi 2p_x = \pi 2p_y$, LUMO is $\sigma 2p_z$ From (iii), $y - z = \frac{1}{6} \Rightarrow y = z + \frac{1}{6}$ Be_2^+ : HOMO is $\sigma_{2\text{s}}^\star$, LUMO is $\pi 2p_x=\pi 2p_y$ 36. Answer (B) From (ii), $x = 2y - z \Rightarrow x = z + \frac{1}{2}$ Hint : CH₃COOH + NaOH : Addition of WA to SB. Conductivity decreases and then does not From (i), $z + \frac{1}{3} + z + \frac{1}{6} + z = 1$ change much. NaOH + CH₃COOH : Addition of SB to WA. \Rightarrow $z + \frac{1}{2} = 1 \Rightarrow z = \frac{1}{6}$ Conductivity increases till neutralisation and then increases at a much faster rate. $\therefore x = z + \frac{1}{3} = \frac{1}{6} + \frac{1}{3} = \frac{1}{2}$ Solution : CH₃NH₂ + CH₃COOH : Addition of WB to WA. $\therefore y = \frac{1}{2}$ Conductivity increases due to neutralisation and then does not change much. $\therefore [S] = 1 - \frac{1}{3} + \frac{1}{6} = \frac{5}{6} \\ [P] = 1 - \frac{1}{2} - \frac{1}{6} = \frac{1}{3} \end{bmatrix} [S] = \frac{5}{2} [P]$ PART - III (MATHEMATICS) 37. Answer (A, C) Hint : Think f(x). 32. Answer (33) Hint: P: PF5 Solution : $Q:SF_6$ $\therefore \quad f(x) = 1 + x + x^2 + \dots + x^n$ Solution : :. $f'(x) \cdot g(x) = (1 + 2x + 3x^2 + ... + nx^{n-1})$ a = 15b = 18 $\left(1-\frac{2}{x}+\frac{3}{x^2}+\frac{3}{x^2}+\frac{1}{x^n}\right)$ 33. Answer (A) Hint : HCN \Rightarrow H⁺ + CN⁻ ... The constant term Adding NH₃ shifts equilibrium to the right $= 1 - 2^{2} + 3^{2} - 4^{2} + \dots (-1)^{n-1} n^{2}$ Solution : $ZnS \implies Zn^{2^*} + S^{2^-}$... Option (A) and (C) are correct according _он _н $n \in \text{odd}$ and even 38. Answer (A, B, C, D) Zn(OH), H,S Hint : Assume 3 numbers in G.P. On adding H⁺, S^{2–} gets consumed Solution : On adding OH-, Zn2+ gets consumed $\therefore z + 3x > 4y \qquad \Rightarrow nr^2 + 3x > 4rx$ $NH_3 + H_2O \Longrightarrow NH_4^+ + OH^ NaH_2PO_4 \Longrightarrow Na_2HPO_4^- + H^+$ \Rightarrow $r^2 - 4r + 3 > 0 \Rightarrow r \in (-\infty, 1) - \{0\} \cup (3, \infty)$ Increasing pH shifts equilibrium to the right 39. Answer (A, C) $H_2O + Na_2CO_3 \rightleftharpoons NaHCO_3 + NaOH$ Hint : Sum of coefficient zero. Decreasing pH shifts equilibrium to the right. Solution : 34. Answer (D) **Hint :** Equivalent mass = $\frac{\text{Molar mass}}{1}$ $\alpha = 1$ and $\beta = \frac{a-b}{b-c}$ all roots of first equation n-factor Solution : y = 1 and $\delta = \frac{c(a-b)}{a(b-c)}$ are roots of second (P) M = 376, x = 6(R) M = 142, x = 2(Q) M = 144, x = 3(S) M = 112, x = 8 equation.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 1A (Paper-2) (Code-E)_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2020

If both roots are common then β = δ

- \Rightarrow *a* = *c* not possible
- \therefore (A) and (C) are only correct options
- 40. Answer (A, B, D)

Hint : Property of modulus.

Solution :

$$|2z_1 + z_2| \le |2z_1| + |z_2| \le 2 + 2 \le 4$$

$$|z_1 + z_2|$$
 is least when O, z_1, z_2 are collinear.

$$\therefore |z_1 + z_2| = 1$$
$$|z_2 + \frac{1}{|z_1|} \le |z_2| + \frac{1}{|z_1|} \le 2 + 1 \le 3$$

41. Answer (A, C, D)

Hint : Fundamental principle of multiplication. Solution :

- : All digits are distinct
- \therefore Number of matrices formed = 9
- .. Corresponding to a value of determinant the another determinant will have a negative value

$$\therefore \quad \sum_{i=2}^{K} \det\left(\Delta_{i}\right) = 0$$

42. Answer (A, B, C, D)

Hint : Reducible to quadratic. Solution :

$$\left(\frac{2x^2}{x^2-1}\right)^2 - \frac{2x^2}{x^2-1} - m(m-1) = 0$$

Let $t = \frac{2x^2}{x^2-1}$
 $\Rightarrow t^2 - t - m(m-1) = 0$
 $\Rightarrow t = m, 1 - m \text{ are two roots}$
 $\Rightarrow \frac{2x^2}{x^2-1} = m \text{ or } \frac{2x^2}{x^2-1} = 1 - m$
 $2x^2 = mx^2 - m \text{ or } 2x^2 = x^2 - mx^2 - 1 + m$
 $\Rightarrow m = x^2(m-2) \quad (m+1)x^2 = m - 1$
 $\Rightarrow x = \pm \sqrt{\frac{m}{m-2}} \quad \Rightarrow \quad x = \pm \sqrt{\frac{m-1}{m+1}}$

Now verify all the options.

43. Answer (16)

Hint : Apply property of determinants.

By $R_2 \rightarrow R_2 - 2R_1$ and $R_3 \rightarrow R_3 - 3R_1$ We get, $u_3 = 64 \implies u = 4$ $\therefore \quad u^2 = 16$

44. Answer (41)

Hint : Take submission out of integration. **Solution :**

Let
$$\boxed{n = 40}$$

$$\sum (-1)^{r-1} {}^{n}C_{r} \int_{0}^{1} (1 + x + x^{2} + \dots + x^{r-1}) dx$$

$$= \sum (-1)^{r-1} {}^{n}C_{r} \int_{0}^{1} (\frac{1 - x^{r}}{1 - x}) dx$$

$$= \int_{0}^{1} \frac{\sum_{r=1}^{n} ((-1)^{r-1} {}^{n}C_{r} - (-1)^{r-1} {}^{n}C_{r} x^{r}) dx}{(1 - x)}$$

$$= \int_{0}^{1} \frac{(-1 + 1 + (1 - x)^{n})}{1 - x} dx$$

$$= \int_{0}^{1} (1 - x)^{n-1} dx = \frac{1}{n}$$

$$\therefore \qquad \left[\frac{1}{n} = \frac{1}{40}\right]$$

45. Answer (98)

Hint : Use mathematical induction approach. Solution :

If $A^2 = O$ the '*n*' must be multiple of 3.

- \therefore largest value of '*n*' is 98
- 46. Answer (17)

Hint : Use characteristic equation.

Solution :

$$\therefore A^{3} + mA^{2} + nA - 6I = 0$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & -11 & 19 \\ 0 & -38 & 46 \end{bmatrix} + m \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 5 \\ 0 & -10 & 14 \end{bmatrix} + n \begin{bmatrix} 1 & 0 & 0 \\ 0 & -10 & 14 \end{bmatrix} + n \begin{bmatrix} 1 & 0 & 0 \\ 0 & -10 & 14 \end{bmatrix} + n \begin{bmatrix} 1 & 0 & 0 \\ 0 & -10 & 14 \end{bmatrix} + n \begin{bmatrix} 1 & 0 & 0 \\ 0 & -10 & 14 \end{bmatrix} + n \begin{bmatrix} 1 & 0 & 0 \\ 0 & -10 & 14 \end{bmatrix} + n \begin{bmatrix} 1 & 0 & 0 \\ 0 & -10 & 14 \end{bmatrix} + n \begin{bmatrix} 1 & 0 & 0 \\ 0 & -10 & 14 \end{bmatrix} + n \begin{bmatrix} 1 & 0 & 0 \\ 0 & -10 & 14 \end{bmatrix} + n \begin{bmatrix} 1 & 0 & 0 \\ 0 & -10 & 14 \end{bmatrix} + n \begin{bmatrix} 1 & 0 & 0 \\ 0 & -10 & 14 \end{bmatrix} + n \begin{bmatrix} 1 & 0 & 0 \\ 0 & -10 & 14 \end{bmatrix} + n \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 0$$

$$\therefore 1 + m + n - 6 = 0 \text{ and } -11 - m + n - 6 = 0$$

$$\Rightarrow n - m = 17$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2020 Test - 1A (Paper-2) (Code-E)_(Hints & Solutions)

47. Answer (21)

Hint : Product of two matrices *A* and *B*. **Solution** :

$$AB = \begin{bmatrix} 3um^2 & 3m^2v & 3wm^2 \\ u & v & w \\ 6mu & 6mv & 6mw \end{bmatrix}$$

$$\therefore \quad 3mu^2 + v + 6wm = (m+2)^2 + 2m + 5m^2$$

$$\Rightarrow \quad 3um^2 + 6wm + v = 6m^2 + 6m + 4$$

$$\Rightarrow \quad u = 2; v = 4; w = 1$$

$$\Rightarrow \quad u^2 + v^2 + w^2 = 4 + 16 + 1 = 21$$

48. Answer (64)

Hint : Property of determinants.

Solution :

$$|B| = \begin{vmatrix} 2^{2} a_{11} & 2^{3} a_{12} & 2^{4} a_{13} \\ 2^{3} a_{21} & 2^{4} a_{22} & 2^{5} a_{23} \\ 2^{4} a_{31} & 2^{5} a_{32} & 2^{6} a_{33} \end{vmatrix}$$
$$= 2^{2} \cdot 2^{3} \cdot 2^{4} \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 2a_{21} & 2a_{22} & 2a_{23} \\ 2^{2} a_{31} & 2^{2} a_{32} & 2^{2} a_{33} \end{vmatrix}$$
$$|B| = 2^{12} |A| \implies |B| = 64$$

49. Answer (24)

Hint : Definition of idempotent matrix.

Solution :

 \therefore $A^2 = A$ \Rightarrow $A = I (\because A \text{ is non singular})$

:.
$$a = \pm 2; b = \pm 3; c = \pm 4; p = q = r = 0$$

$$\Rightarrow N = |0 - (\pm 24)|$$

N = 24

50. Answer (01)

Hint : Use binomial inside binomial.

Solution :

Coefficient of x^{100} in

$$\left({}^{100}C_0(1+x)^{200}-{}^{100}C_1(1+x)^{199}+....\right)$$

Coefficient of x^{100} in $(1 + x)^{100} \cdot x^{100} = 1$

51. Answer (C)

Hint : Gap method.

Solution :

$$n_1 = {}^7C_5 \times \underline{|6|} \times \underline{|5|} \qquad n_2 = (\underline{|5|})^2 \times {}^6C_1$$
$$n_3 = \underline{|6|} \times \underline{|5|}; \qquad \boxed{n_4 = 0}$$

52. Answer (B) Hint : A.M \ge G.M. Solution : \therefore All the roots are positive $\therefore \frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6}{6} = z = A.M.$

Also
$$(\alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 \alpha_6)^{\overline{6}} = z = G.M.$$

- $\therefore~$ All the roots are equal and are 2
- $\therefore \quad f(x) = (x-2)^6$

Now verify each of the values.

53. Answer (A)

Hint : Theory of equation.

Solution :

$$\frac{1-\tan\theta}{1+\tan\theta} = \frac{3\tan\theta - \tan^3\theta}{1-3\tan^2\theta}$$
$$\Rightarrow \tan^4\theta + 4\tan^3\theta - 6\tan^2\theta - 4\tan\theta + 1 = 0$$
$$= \sum \tan^2\theta = 4$$

$$\sum \tan \alpha = -4$$

$$\sum (\tan \alpha \tan \beta) = -6$$

$$\sum (\tan \alpha \tan \beta \tan \alpha) = 4$$

 $\sum_{\alpha} (\tan \alpha \tan \beta \tan \gamma) = 4$ $\pi(\tan \alpha) = 1$

54. Answer (B)

Hint : Assumption of odd consecutive integer.

Solution :

Let odd integer are 2m + 1, 2m + 3, let number be n

:.
$$57^2 - 13^2 = n(2m + n)$$

 $(m + n)^2 - m^2 = 57^2 - 13^2$

$$\Rightarrow$$
 m = 13; n + m = 57

- $\therefore n = 44$
- ... The least integer = 26 + 1 = 27Largest integer = 113 Number of factors of type (4n + 1) for 113 is 1 Sum of least + largest integer = $140 = 5 \times 7 \times 2^2$
- \therefore Number of factors 2 × 2 × 3 = 12

All India Aakash Test Series for JEE (Advanced)-2020

TEST - 1A (Paper-2) - Code-F

Test Date : 13/10/2019

ANSWERS						
	PHYSICS		CHEMISTRY		MATHEMATICS	
	1.	(A, B, C)	19.	(B, C, D)	37.	(A, B, C, D)
	2.	(A, C, D)	20.	(A, B, C)	38.	(A, C, D)
	3.	(A, D)	21.	(A, C)	39.	(A, B, D)
	4.	(B, D)	22.	(A, B)	40.	(A, C)
	5.	(A, B, C, D)	23.	(A, B)	41.	(A, B, C, D)
	6.	(A, D)	24.	(A, B, C)	42.	(A, C)
	7.	(27)	25.	(33)	43.	(01)
	8.	(03)	26.	(25)	44.	(24)
	9.	(17)	27.	(35)	45.	(64)
	10.	(18)	28.	(90)	46.	(21)
	11.	(72)	29.	(23)	47.	(17)
	12.	(10)	30.	(03)	48.	(98)
	13.	(65)	31.	(80)	49.	(41)
	14.	(12)	32.	(32)	50.	(16)
	15.	(B)	33.	(B)	51.	(B)
	16.	(D)	34.	(D)	52.	(A)
	17.	(C)	35.	(D)	53.	(B)
	18.	(D)	36.	(A)	54.	(C)

HINTS & SOLUTIONS

PART - I (PHYSICS)

1. Answer (A, B, C)

Hint : Frictional force has tendency to stop sliding.

Solution :

If $\alpha > 45^{\circ}$

- \Rightarrow $F_1 \sin \alpha > F_2 \cos \alpha$
- \Rightarrow Friction will be along Q
- 2. Answer (A, C, D)

Hint : Sphere will perform SHM. Solution :

$$\tau_{p} = I_{p}\alpha$$

$$\left(\frac{9kx}{2}\right)\frac{3R}{2} + (3kx)2R = \left(\frac{7}{5}mp^{2}\right)\frac{9}{R}$$

$$\Rightarrow \quad \omega = \sqrt{\frac{255k}{28M}} = 1 \text{ rad/s}, \ T = 2\pi \text{ s}$$

3. Answer (A, D)

Hint : F_{ST} (Vertical component) = weight of liquid. **Solution** :

By geometry

$$\frac{r}{R} = \cos\left(\theta + \frac{\alpha}{2}\right) \implies R = \frac{r}{\cos 60^{\circ}} = 2r$$
Now $P_0 - \frac{2S}{R} + h\rho g = P_0$

$$\implies h = \frac{2S}{R\rho g} = \frac{2 \times 10^{-2}}{2 \times 10^{-3} \times 10^3 \times 10}$$
 $H = 10^{-3} \text{ m} = \left(\frac{1}{10} \text{ cm}\right)$

4. Answer (B, D)

Hint : $\vec{F} = \frac{\vec{dp}}{dt}$

Solution :

$$t = 2\sqrt{\frac{l}{g}}$$
, $F = (2\sqrt{gl})(\frac{2m}{l}\sqrt{gl}) + mg$
 $F = (\frac{m}{l})(4gl) + mg = 5mg$

$$t = \sqrt{\frac{2\left(\frac{3l}{2}\right)}{g}} = \sqrt{\frac{3l}{g}}, \quad F = \frac{Mg}{2} + \left(\sqrt{2g\frac{3l}{2}}\right)\frac{M}{l}\sqrt{3gl}$$
$$F = \frac{Mg}{2} + \left(\frac{M}{l}\right)(3gl)$$
$$= \left(\frac{7Mg}{2}\right)$$

5. Answer (A, B, C, D)

Hint : Momentum in horizontal direction and mechanical energy will be conserved.

Solution :

6. Answer (A, D)

Hint : At F = 10 N cone is just about to topple. Solution :

$$\Rightarrow N_1 = 0$$
$$N_2 = 10 \text{ N}$$

7. Answer (27)

Hint :
$$T = \frac{F}{2\sin\theta}$$

Solution :

$$\frac{T}{A} = \frac{F}{2A\sin\theta}$$
$$\frac{\Delta I}{I} = \frac{\sqrt{d^2 \times I^2} - I}{I}$$
$$\left(1 \times \frac{d^2}{I^2}\right)^{\frac{1}{2}} - 1 = \frac{d^2}{2I^2}$$
$$\Rightarrow \quad d = I \left(\frac{F}{\pi r^2 Y}\right)^{\frac{1}{3}}$$
$$d = 8100 \left(\frac{10^{-2}}{3}\right) = 27 \text{ cm}$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 1A (Paper-2) (Code-F)_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2020

8. Answer (03)

Hint : $P_B A = F_{centre}$ Solutio

$$\int_{0}^{P_{B}} (dp) A = \int_{\frac{l}{2}}^{l} pA\omega^{2} x dx$$
$$P = \frac{p\omega^{2}}{2} \left(\frac{3l^{2}}{4}\right)$$

$$=\frac{1000\times100}{2}\times\frac{3}{4}(\sqrt{8})$$

 $= 3 \times 10^{5} \text{ N/m}$

9. Answer (17)

Hint : Net force on free surface is always perpendicular to surface.

Solution :

 $g\sin\theta = a_0\cos(\theta + 37^\circ)$

$$\tan \theta = \frac{6}{17}$$

10. Answer (18)

Hint :

 $12t - 2a_A - a_0 = 0$

Solution :

$$\Rightarrow a_{A} = \left(6t - \frac{a_{0}}{2}\right)$$
$$\int_{0}^{v} dv = \int_{0}^{t} \left(6t - \frac{a_{0}}{2}\right) dt$$
$$\Rightarrow v = 3t^{2} - \frac{a_{0}}{2}t$$
$$\Rightarrow v = 0, \Rightarrow 3t = \frac{a_{0}}{2}$$
$$\Rightarrow a_{0} = 6t$$
11. Answer (72)

~

Hint :
$$l = l_1 + l_2$$

Solution :

$$I = \left(\frac{1}{6}\right)(2M)64 + \frac{1}{6}(M)16$$

= 72

12. Answer (10)

Hint :
$$\Sigma \vec{F} = 0$$
 and $\vec{\tau} = 0$

$$A = 1000$$

⇒ 200 + 100 + 20 (t) = 1000
⇒ t = 65 s

Hint :
$$X = A\cos\left(\frac{2\pi}{T}t\right)$$

$$X = A\cos\left(\frac{2\pi}{T}t\right)$$

At *t* = 2

 $a_1 \neq a_2$

$$X = \frac{A\sqrt{3}}{2}$$

15. Answer (B) **Hint**: $0 \le f_s \le \mu_s N$ F = 2 NSolution : $f_1 = f_2 = 2, a_1 = a_2 = 0$ at F = 6 N f_1 (required) = 5 N $\therefore a_1 = a_2 = 1 \text{ m/s}^2$ for F > 6 N

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2020

Test - 1A (Paper-2) (Code-F)_(Hints & Solutions)

16. Answer (D)

Hint : Use formula of gravitational potential.

Solution :

(A)
$$V_P = \frac{-2GM}{3R} - \frac{GM}{2R} = -\frac{7}{6} \frac{GM}{R}$$

(B) $V = -\frac{GM}{2R^3} \left(3R^2 - \frac{R^2}{4} \right) = -\frac{11}{8} \frac{GM}{R}$
(C) $V = -\frac{GM}{5R}$

17. Answer (C)

Hint : An ideal liquid is incompressible as well as non-viscous.

Solution :

v remains constant in case of incompressible liquid

$$\Rightarrow \rho = \frac{m}{v} = \text{constant}$$

18. Answer (D)

Hint : Apply conversation of momentum. Solution :

$$Mv_0 = Mv_{\rm cm} + Mv_0$$

$$\Rightarrow v_{cm} + v = v_0 \qquad \dots(i)$$
$$|J| = M(v_0 - v)$$

$$M(v_0 - v)R = \left(\frac{MR^2}{2}\right)\left(\frac{v - v_{cm}}{R}\right) \qquad \dots \text{(ii)}$$

$$\Rightarrow 2v_0 - 2v = v - v_{cm}$$

$$\Rightarrow 3v - v_{cm} = 2v_0 \qquad \dots (iii)$$

From (i) and (ii)

$$v = \frac{3v_0}{4} = 3 \text{ m/s}$$

$$v_{cm} = \frac{v_0}{4} = 1 \text{ m/s}$$

$$\omega = \frac{v_0}{2R} = 2 \text{ rad/s}$$

$$J = M\left(v_0 - \frac{3v_0}{4}\right) = \left(\frac{Mv_0}{4}\right)$$

$$= \frac{4 \times 4}{4} = 4$$

PART - II (CHEMISTRY)

- 19. Answer (B, C, D)
 Hint : Conservation of mass and charge.
 Solution :
 R is proton
 S is neutron
 T is positron
- 20. Answer (A, B, C)

Hint:
$$\left(P + \frac{a}{V^2}\right)(V - b) = RT$$

Solution :

When a = 0, PV + Pb = RT Straight line When b = 0,

$$\left(\mathsf{P} + \frac{\mathsf{a}}{\mathsf{V}^2}\right)(\mathsf{V}) = \mathsf{R}\mathsf{T}$$

$$\Rightarrow PV + \frac{a}{V} = RT \quad \text{Straight line}$$

When a = b = 0
PV = RT

So PV versus P is a straight line parallel to pressure axis.

21. Answer (A, C)

Hint : For endothermic reaction, K increases with temperature.

Solution :

For exothermic reaction, K decreases with temperature.

22. Answer (A, B)

Hint : Frequency factor (A) = pZ

where Z is the number of collisions per unit volume per unit time, and p is the probability or steric factor.

Solution :

For Arrhenius theory, p < 1.

Experimentally, p may be less than, greater than or equal to 1.

23. Answer (A, B)

Hint : The given graph represents negative deviation from Raoults law.

Solution :

When $X_Q = 0$, $X_P = 1$ So $Z = P_n^{\circ}$

Relative volatility can't be predicted on the basis of the given data.

Hint : $q + w = \Delta U$ Both q and w are path functions but ΔU is state function. Solution : Free expansion is simultaneously adiabatic as well as isothermal. 25. Answer (33) Hint: P: PF5 $Q: SF_6$ Solution : a = 15 b = 18 26. Answer (25) Hint : $P(g) \rightleftharpoons Q(g) + R(g)$ 1-x-z x-y x+y+z $Q(g) + S(g) \rightleftharpoons R(g) + T(g)$ (x-y) (1-y+z) (x+y+z)y–z $P(g) + T(g) \rightleftharpoons R(g) + S(g)$ (1-x-z) (y-z)(x+y+z) (1-y+z)Solution : At equilibrium, x + y + z = 1...(i) x - y = y - z...(ii) $1 - y + z = \frac{5}{6}$...(iii) From (iii), $y - z = \frac{1}{6} \Rightarrow y = z + \frac{1}{6}$ From (ii), $x = 2y - z \Rightarrow x = z + \frac{1}{3}$ From (i), $z + \frac{1}{3} + z + \frac{1}{6} + z = 1$ \Rightarrow $z + \frac{1}{2} = 1 \Rightarrow z = \frac{1}{6}$ $\therefore x = z + \frac{1}{3} = \frac{1}{6} + \frac{1}{3} = \frac{1}{2}$ $\therefore y = \frac{1}{3}$ $\therefore [S] = 1 - \frac{1}{3} + \frac{1}{6} = \frac{5}{6} \\ [P] = 1 - \frac{1}{2} - \frac{1}{6} = \frac{1}{3} \end{bmatrix} [S] = \frac{5}{2} [P]$

24. Answer (A, B, C)

27. Answer (35) **Hint :** PV^4 = Constant $TV^3 = Constant$ Solution : $C = C_v - \frac{R}{n-1}$ $=\frac{3R}{2}-\frac{R}{3}$ $=\frac{7R}{c}$ $\therefore X = \frac{7}{6}$ 30X = 3528. Answer (90) Hint : $\frac{dE}{dT} = \frac{\Delta S}{pE}$ $\Rightarrow \Delta S = -2 \times 10^{-6} \times 2 \times 96500$ = -0.386 J/mol K Solution : $\Delta G = \Delta H - T \Delta S$ -2(96500) (1.4) = ∆H - 300 (-0.386) -270200 = ∆H + 115.8 ΔH = -270315.8 J/mol $\Delta H = -270.32 \text{ kJ/mol}$ ∴ X = 270.32 29. Answer (23) **Hint** : Density = $\frac{Mass}{Volume}$ Solution : $12 = \frac{2 \times (x)}{N_0 64 \times 10^{-24}}$ where x = atomic mass $\Rightarrow x = \frac{12 \times N_0 \times 64 \times 10^{-24}}{2}$ = 230.4 gm So, $\frac{x}{10} = 23.04$ 30. Answer (03) Hint : (1) \rightarrow H₂ (2) \rightarrow He (3) $\rightarrow N_2$ (4) \rightarrow CO₂

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2020 Test - 1A (Paper-2) (Code-F)_(Hints & Solutions)

Solution :

x = 1

y = 3

- xy = 3
- 31. Answer (80)

Hint : Vsolvent = Vsolution

Solution :

Let 1 L solution be taken

So, moles of solute = 3.2

and mass of solvent = 1000d

:.
$$m = \frac{3.2 \times 1000}{1000d} = 4$$

$$\Rightarrow \frac{3.2}{d} = 4$$

$$\Rightarrow$$
 d = 0.8

- ∴ 100d = 80
- 32. Answer (32)

Hint : Degeneracy of n^{th} shell in H atom is equal to n^2 . So, Y = 16

Solution :

In 4th shell \rightarrow 4s, 4p, 4d and 4f

$$\therefore$$
 Number of e⁻ with $m_s = +\frac{1}{2} = 16$

33. Answer (B)

Hint : CH₃COOH + NaOH : Addition of WA to SB. Conductivity decreases and then does not change much.

 $NaOH + CH_3COOH$: Addition of SB to WA. Conductivity increases till neutralisation and then increases at a much faster rate.

Solution :

 CH_3NH_2 + CH_3COOH : Addition of WB to WA. Conductivity increases due to neutralisation and then does not change much.

34. Answer (D)

Hint :

N₂: HOMO is $\sigma 2p_z$, LUMO is $\pi * 2p_x = \pi * 2p_y$

$$O_2^-$$
: HOMO is $\pi * 2p_x = \pi * 2p_y$, LUMO is $\sigma * 2p_z$

Solution :

 C_2 : HOMO is $\pi 2p_x = \pi 2p_y$, LUMO is $\sigma 2p_z$

 Be_2^+ : HOMO is σ_{2s}^* , LUMO is $\pi 2p_x = \pi 2p_y$

35. Answer (D)

Hint : Equivalent mass = $\frac{\text{Molar mass}}{\text{n-factor}}$

Solution :

(P) M = 376, x = 6	(R) M = 142, x = 2
(Q) M = 144, x = 3	(S) M = 112, x = 8

36. Answer (A)

Hint : $HCN \rightleftharpoons H^+ + CN^-$

Adding NH_3 shifts equilibrium to the right

Solution :

$$ZnS \implies Zn^{2^*} + S^{2^*}$$

 $\downarrow OH \qquad \downarrow H^*$
 $Zn(OH)_2 = H_2S$

On adding H⁺, S^{2-} gets consumed On adding OH⁻, Zn^{2+} gets consumed

$$NH_3 + H_2O \Longrightarrow NH_4^+ + OH^-$$

$$NaH_2PO_4 \rightleftharpoons Na_2HPO_4^- + H^+$$

Increasing pH shifts equilibrium to the right $H_2O + Na_2CO_3 \rightleftharpoons NaHCO_3 + NaOH$

Decreasing pH shifts equilibrium to the right.

PART - III (MATHEMATICS)

37. Answer (A, B, C, D) Hint : Reducible to quadratic.

Solution :

$$\left(\frac{2x^2}{x^2 - 1}\right)^2 - \frac{2x^2}{x^2 - 1} - m(m - 1) = 0$$

Let $t = \frac{2x^2}{x^2 - 1}$
 $\Rightarrow t^2 - t - m(m - 1) = 0$

$$\Rightarrow$$
 $t = m$, $1 - m$ are two roots

$$\Rightarrow \frac{2x^2}{x^2 - 1} = m \text{ or } \frac{2x^2}{x^2 - 1} = 1 - m$$

$$2x^2 = mx^2 - m \text{ or } 2x^2 = x^2 - mx^2 - 1 + m$$

$$\Rightarrow m = x^2(m - 2) \quad (m + 1)x^2 = m - 1$$

$$\Rightarrow x = \pm \sqrt{\frac{m}{m - 2}} \quad \Rightarrow \quad x = \pm \sqrt{\frac{m - 1}{m + 1}}$$

Now verify all the options.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 1A (Paper-2) (Code-F)_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2020

38. Answer (A, C, D)

Hint : Fundamental principle of multiplication. Solution :

- : All digits are distinct
- \therefore Number of matrices formed = 9
- : Corresponding to a value of determinant the another determinant will have a negative value

$$\therefore \quad \sum_{i=2}^{\kappa} \det\left(\Delta_{i}\right) = 0$$

39. Answer (A, B, D)

Hint : Property of modulus.

Solution :

$$|2z_1 + z_2| \le |2z_1| + |z_2| \le 2 + 2 \le 4$$

 $|z_1 + z_2|$ is least when O, z_1, z_2 are collinear.

$$\therefore |z_1 + z_2| = 1$$

$$|z_2 + \frac{1}{z_1}| \le |z_2| + \frac{1}{|z_1|} \le 2 + 1 \le 3$$

40. Answer (A, C)

Hint : Sum of coefficient zero. Solution :

$$\alpha = 1$$
 and $\beta = \frac{a-b}{b-c}$ all roots of first equation

$$y = 1$$
 and $\delta = \frac{c(a-b)}{a(b-c)}$ are roots of second

equation.

If both roots are common then β = δ

- \Rightarrow *a* = *c* not possible
- \therefore (A) and (C) are only correct options
- 41. Answer (A, B, C, D)

Hint : Assume 3 numbers in G.P. **Solution :**

$$\therefore \quad z + 3x > 4y \qquad \Rightarrow nr^2 + 3x > 4rx$$

$$\Rightarrow r^2 - 4r + 3 > 0 \Rightarrow r \in (-\infty, 1) - \{0\} \cup (3, \infty)$$

42. Answer (A, C)

Hint : Think *f*(*x*).

Solution :

$$f(x) = 1 + x + x^{2} + \dots x^{n}$$

∴ $f'(x) \cdot g(x) = (1 + 2x + 3x^{2} + \dots + nx^{n-1})$
 $\left(1 - \frac{2}{x} + \frac{3}{x^{2}} \dots + (-1)^{n} \frac{n+1}{x^{n}}\right)$

... The constant term

$$= 1 - 2^{2} + 3^{2} - 4^{2} + \dots (-1)^{n-1} n^{2}$$

- :. Option (A) and (C) are correct according $n \in \text{odd}$ and even
- 43. Answer (01)

Hint : Use binomial inside binomial.

Solution :

Coefficient of x^{100} in

$$\binom{100}{100}C_0(1+x)^{200} - \frac{100}{100}C_1(1+x)^{199} + \dots$$

Coefficient of
$$x^{100}$$
 in $(1 + x)^{100} \cdot x^{100} = 1$

44. Answer (24)

Hint : Definition of idempotent matrix.

Solution :

$$\therefore A^2 = A \qquad \Rightarrow A = I (\because A \text{ is non singular})$$

:
$$a = \pm 2; b = \pm 3; c = \pm 4; p = q = r = 0$$

$$\Rightarrow N = |0 - (\pm 24)|$$
$$N = 24$$

45. Answer (64)

Hint : Property of determinants.

Solution :

$$|B| = \begin{vmatrix} 2^{2} a_{11} & 2^{3} a_{12} & 2^{4} a_{13} \\ 2^{3} a_{21} & 2^{4} a_{22} & 2^{5} a_{23} \\ 2^{4} a_{31} & 2^{5} a_{32} & 2^{6} a_{33} \end{vmatrix}$$
$$= 2^{2} \cdot 2^{3} \cdot 2^{4} \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 2a_{21} & 2a_{22} & 2a_{23} \\ 2^{2} a_{31} & 2^{2} a_{32} & 2^{2} a_{33} \end{vmatrix}$$

 $|B| = 2^{12} |A| \qquad \Rightarrow \quad |B| = 64$

46. Answer (21)

Hint : Product of two matrices *A* and *B*. **Solution** :

$$AB = \begin{bmatrix} 3um^2 & 3m^2v & 3wm^2 \\ u & v & w \\ 6mu & 6mv & 6mw \end{bmatrix}$$

$$\therefore \quad 3mu^2 + v + 6wm = (m+2)^2 + 2m + 5m^2$$

$$\Rightarrow \quad 3um^2 + 6wm + v = 6m^2 + 6m + 4$$

$$\Rightarrow \quad u = 2; v = 4; w = 1$$

$$\Rightarrow \quad u^2 + v^2 + w^2 = 4 + 16 + 1 = [21]$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

47. Answer (17)

Hint : Use characteristic equation. Solution :

$$\therefore A^3 + mA^2 + nA - 6I = 0$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & -11 & 19 \\ 0 & -38 & 46 \end{bmatrix} + m \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 5 \\ 0 & -10 & 14 \end{bmatrix} + n \begin{bmatrix} 1 & 0 & 0 \\ 0 & -10 & 14 \end{bmatrix} + n \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix} - 6 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 0$$

- \therefore 1 + m + n 6 = 0 and -11 m + n 6 = 0
- $\Rightarrow n-m=17$
- 48. Answer (98)

Hint : Use mathematical induction approach. Solution :

- If $A^2 = O$ the '*n*' must be multiple of 3.
- \therefore largest value of '*n*' is 98
- 49. Answer (41)

Hint : Take submission out of integration. Solution :

Let $\boxed{n = 40}$ $\sum (-1)^{r-1} {}^{n}C_{r} \int_{0}^{1} (1 + x + x^{2} + \dots + x^{r-1}) dx$ $= \sum (-1)^{r-1} {}^{n}C_{r} \int_{0}^{1} (\frac{1 - x^{r}}{1 - x}) dx$ $= \int_{0}^{1} \frac{\sum_{r=1}^{n} ((-1)^{r-1} {}^{n}C_{r} - (-1)^{r-1} {}^{n}C_{r} x^{r}) dx}{(1 - x)}$ $= \int_{0}^{1} \frac{(-1 + 1 + (1 - x)^{n})}{1 - x} dx$ $= \int_{0}^{1} (1 - x)^{n-1} dx = \frac{1}{n}$ $\therefore \quad \boxed{\frac{1}{n} = \frac{1}{40}}$

50. Answer (16) **Hint :** Apply property of determinants. **Solution :** By $R_2 \rightarrow R_2 - 2R_1$

and
$$R_3 \rightarrow R_3 - 3R_1$$

We get, $u_3 = 64 \implies u = 4$
 $\therefore \quad \boxed{u^2 = 16}$

51. Answer (B)

Hint : Assumption of odd consecutive integer. Solution :

Solution :

Let odd integer are 2m + 1, 2m + 3, let number be n

$$\therefore 57^2 - 13^2 = n(2m + n)$$
$$(m + n)^2 - m^2 = 57^2 - 13^2$$

- \Rightarrow *m* = 13; *n* + *m* = 57
- ∴ *n* = 44
- ... The least integer = 26 + 1 = 27Largest integer = 113Number of factors of type (4n + 1) for 113is 1 Sum of least + largest integer = $140 = 5 \times 7 \times 2^2$
- $\therefore \text{ Number of factors } 2 \times 2 \times 3 = 12$
- 52. Answer (A)

Hint : Theory of equation.

Solution :

$$\frac{1 - \tan \theta}{1 + \tan \theta} = \frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta}$$

$$\Rightarrow \tan^4 \theta + 4 \tan^3 \theta - 6 \tan^2 \theta - 4 \tan \theta + 1 = 0$$

$$\therefore \quad \sum \tan \alpha = -4$$

$$\sum (\tan \alpha \tan \beta) = -6$$

$$\sum (\tan \alpha \tan \beta \tan \gamma) = 4$$

$$\pi(\tan \alpha) = 1$$

53. Answer (B)

 $\textbf{Hint:} A.M \geq G.M.$

Solution :

: All the roots are positive

$$\therefore \quad \frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6}{6} = z = A.M.$$

Also
$$\left(\alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 \alpha_6\right)^{\frac{1}{6}} = z = G.M.$$

 \therefore All the roots are equal and are 2

$$\therefore \quad f(x) = (x-2)^6$$

Now verify each of the values.

54. Answer (C) **Hint :** Gap method.

Solution :

$$n_{1} = {}^{7}C_{5} \times \underline{|6|} \times \underline{|5|} \quad n_{2} = (\underline{|5|})^{2} \times {}^{6}C_{1}$$
$$n_{3} = \underline{|6|} \times \underline{|5|}; \quad \boxed{n_{4} = 0}$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

8/8