All India Aakash Test Series for JEE (Advanced)-2020

TEST - 3A (Paper-1) - Code-A

Test Date : 06/10/2019

ANSWERS

PHYSICS

1. (B, C)
2. (A, D)
3. (A, C, D)
4. (A, B)
5. (A, D)
6. (D)
7. (C)
8. (B)
9. (B)
10. (A)
11. (D)
12. (B)
13. (A)
14. (C)
15. (D)
16. $A \rightarrow(Q, R, T)$
$B \rightarrow(P, R)$
$C \rightarrow(S, T)$
$\mathrm{D} \rightarrow(\mathrm{R}, \mathrm{S}, \mathrm{T})$
17. $\quad A \rightarrow(Q, S)$
$B \rightarrow(P, S)$
$\mathrm{C} \rightarrow(\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T})$
$\mathrm{D} \rightarrow(\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T})$
18. (01)
19. (08)
20. (03)

CHEMISTRY

21. (B, D)
22. (C)
23. (A, B, D)
24. (A, B, D)
25. (B, C)
26. (B)
27. (C)
28. (D)
29. (D)
30. (A)
31. (B)
32. (B)
33. (A)
34. (C)
35. (B)
36. $A \rightarrow(P, R, T)$
$B \rightarrow(P, R)$
$C \rightarrow(S, T)$
$\mathrm{D} \rightarrow(\mathrm{Q}, \mathrm{R})$
37. $\quad A \rightarrow(R, T)$
$B \rightarrow(P, S, T)$
$C \rightarrow(P, Q, S)$
$\mathrm{D} \rightarrow(\mathrm{P}, \mathrm{Q}, \mathrm{S})$
38. (08)
39. (06)
40. (08)

MATHEMATICS

41. (A, D)
42. (B, C)
43. (A, B, D)
44. (A, D)
45. $(\mathrm{A}, \mathrm{B}, \mathrm{C})$
46. (B)
47. (B)
48. (C)
49. (A)
50. (D)
51. (D)
52. (B)
53. (C)
54. (C)
55. (C)
56. $\quad A \rightarrow(P, Q, R)$
$B \rightarrow(P, Q, R)$
$C \rightarrow(S, T)$
$\mathrm{D} \rightarrow(\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T})$
57. $A \rightarrow(Q, R, S, T)$
$B \rightarrow(Q, R, S, T)$
$\mathrm{C} \rightarrow(\mathrm{T})$
$\mathrm{D} \rightarrow(\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S})$
58. (02)
59. (07)
60. (00)

HINTS \& SOLUTIONS

PART - I (PHYSICS)

1. Answer (B, C)

Hint : $\int F d t=\int i B \ell \cdot d t$
Solution : Let i be the current at any time during short changes then

$F(t)=i \ell B$ and impulse $\int F(t) d t=\int \ell B i d t$
$\Rightarrow m v=\ell B \Delta q \Rightarrow \Delta q=\frac{m v}{B \ell}$
Work done by battery $w_{b}=\frac{\varepsilon m v}{B \ell}$
$=\Delta W_{\text {loss }}=\frac{\varepsilon m v}{B \ell}-\frac{1}{2} m v^{2}$
2. Answer (A, D)

Hint : At resonance $|\omega L|=\frac{1}{|\omega C|}$
Solution: At resonance $|\omega L|=\frac{1}{|\omega C|}$
$V_{L}=60$ volts
$V_{R}=80$ volts

Clearly, $\frac{V_{L}}{V_{R}}=\frac{\omega L}{R} \Rightarrow \frac{60}{80}=\frac{\omega L}{240}$
$\Rightarrow \omega L=180 \Omega \quad \Rightarrow \quad L=\frac{180}{90}=2 \mathrm{H}$
Similarly $\frac{1}{\omega C}=180 \Rightarrow C=\frac{1}{90 \times 180}=\frac{1}{16200} F$
For current to lag by $45^{\circ}|R|=\left|\omega L-\frac{1}{\omega C}\right|$
$\Rightarrow \omega^{2} L C-1=240 \omega C$
$\Rightarrow \omega^{2}-120 \omega-8100=0$
$\therefore \quad \omega=60+10 \sqrt{117} \mathrm{rad} / \mathrm{s}$
3. Answer (A, C, D)

Hint :
If there is no dissipating force then the system will oscillate.

Solution : If there is no dissipating force/s then the system will oscillate.
But if there is some small resistance then

$$
m g-\frac{v B^{2} \ell^{2}}{r}=\frac{m d v}{d t}
$$

Before it attains the steady constant speed, $\frac{d v}{d t}$ is positive. That means part of the work done by gravity is appearing as increase in kinetic energy and rest are dissipating as heat energy.
Finally $\frac{d v}{d t}=0$. i.e. $\quad v_{0}=\frac{m g r}{B^{2} \ell^{2}}$
4. Answer (A, B)

Hint: $n_{1} \sin i=n_{2} \sin r$.
Solution :

Let SPM be the spherical surface separating two media with refractive index n_{1} and n_{2} respectively.
So for refraction at point A
$n_{1} \sin i=n_{2} \sin r \Rightarrow \frac{\sin i}{\sin r}=\frac{n_{2}}{n_{1}}$
Take $|C P|=R, \quad|O C|=r_{1}$ and $|I C|=r_{2}$
$\angle A I C=\beta, \quad \angle A O C=\alpha$ then
In $\triangle A O C, \frac{\sin i}{\sin \alpha}=\frac{r_{1}}{|R|}$
Also in $\triangle A I C \frac{\sin r}{\sin \beta}=\frac{r_{2}}{|R|}$
For a very particular case when $\angle \alpha=\angle r$ and $\angle \beta=\angle i$ then equation (ii) will become.
$\frac{\sin i}{\sin \alpha}=\frac{r_{1}}{|R|}=\frac{n_{2}}{n_{1}}$
$\Rightarrow \quad r_{1}=\frac{n_{2}}{n_{1}}|R|$
and equation (iii) will become $\frac{\sin r}{\sin B}=\frac{r_{2}}{|R|}=\frac{n_{1}}{n_{2}}$
$\Rightarrow|r|=\frac{n_{1}}{n_{2}}|R|$
Irrespective of the point A being paraxial or marginal. Hence all ray emanating from O seems to be emanating from i and vice-versa.
5. Answer (A, D)

Hint : $|m|=\frac{|y|}{|x|}$

Solution :

Let u_{0} be the speed of object and v be the speed of image and x and y are the respective distance of object and image, then
Magnification $|m|=\frac{|y|}{|x|}$
Also, $v \sin \beta=|m| u_{0} \sin \alpha$

$$
\begin{align*}
& v \cos \beta=|m|^{2} u_{0} \cos \alpha \tag{ii}\\
\therefore & \tan \beta=\frac{|x|}{|y|} \tan \alpha
\end{align*}
$$

Now $\frac{1}{y}+\frac{1}{x}=\frac{1}{f}$
$\Rightarrow \frac{\tan \beta}{x \tan \alpha}+\frac{1}{x}=\frac{1}{f}$
$\Rightarrow x=f \frac{(\tan \alpha+\tan \beta)}{\tan \alpha}$

Also, $\frac{1}{y}+\frac{\tan \alpha}{y \tan \beta}=\frac{1}{f}$
$\Rightarrow y=\frac{f(\tan \alpha+\tan \beta)}{\tan \beta}$
6. Answer (D)
7. Answer (C)
8. Answer (B)

Hint: $\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$
Solution for Q. Nos. 6 to 8
For Q. No. 6

$\frac{1}{V_{1}}+\frac{\mu}{25}=\frac{(1-\mu)}{-50}$
$\Rightarrow \quad \frac{1}{V_{1}}+\frac{3}{2 \times 25}=\frac{1}{100}$
$\Rightarrow \quad \frac{1}{V_{1}}=\frac{1}{100}-\frac{6}{100}$
$\Rightarrow \quad \frac{1}{V_{1}}=\frac{-5}{100} \quad \therefore \quad V_{1}=-20 \mathrm{~cm}$
$\therefore \quad$ Shifting in $1^{\text {st }}$ case is $25-20=5 \mathrm{~cm}$
For Q. No. 7

$\frac{1}{V_{2}}+\frac{\mu}{75}=\frac{(1-\mu)}{-50}$
$\Rightarrow \quad \frac{1}{V_{2}}=\frac{1}{100}-\frac{3}{2 \times 75}$
$\Rightarrow \quad \frac{1}{V_{2}}=\frac{1}{100}-\frac{1}{50}$
$\Rightarrow \quad \frac{1}{V_{2}}=\frac{-1}{100}$
$\therefore \quad V_{2}=-100$
Shifting $\Rightarrow 100-75=25 \mathrm{~cm}$
For Q. No. 8

$\frac{\mu}{V_{3}}-\frac{1}{\infty}=\frac{(\mu-1)}{50}$
$\therefore \quad \frac{3}{2 V_{3}}=\frac{1}{2 \times 50}$
$\Rightarrow \quad V_{3}=150 \mathrm{~cm}$
So for mirror (at plane surface) object distance is +75 cm .
\therefore Image would be at 75 cm opposite to silvered surface which falls on the periphery of the sphere.
9. Answer (B)
10. Answer (A)
11. Answer (D)

Hint : $I=\frac{v}{z}$ (Here z is impedance)

Solution for Q. Nos. 9 to 11

$100 \mathrm{~V}, 50 \mathrm{~Hz}$
$X_{L}=\omega L=2 \pi \times 50 \frac{1}{5 \pi}=20 \Omega$
$X_{C}=\frac{1}{\omega C}=\frac{1 \pi \times 10^{6}}{2 \pi \times 50 \times 500}=20 \Omega$
Let $z_{1}=20+20 j ; z_{2}=20-20 j ; z_{3}=20+20 j$
$\therefore \frac{1}{z}=\frac{1}{z_{2}}+\frac{1}{z_{3}}=\frac{1}{20-20 j}+\frac{1}{20+20 j}$
$=\frac{20 j+20+20-20 j}{400+400}$
$\Rightarrow \quad z^{\prime}=\frac{800}{40}=20 \Omega$
$\therefore \quad z_{\text {eq }}=20+20 j+20=40+20 j$

$\therefore|z|=20 \sqrt{5} \cdot \tan \theta=\frac{1}{2} \quad \cos \theta=\frac{2}{\sqrt{5}}$
$\therefore I=\frac{100 \angle 0}{20 \sqrt{5} \angle \theta}=\sqrt{5} \Rightarrow I_{0}=\sqrt{10}$
Current amplitude $=\sqrt{10}$ ampere
$\therefore \quad$ Power dissipation $=I_{\mathrm{rms}} \cdot V_{\mathrm{rms}} \cos \phi$
$\Rightarrow \quad z_{2} I_{C}=z_{3} I_{\mathrm{L}} \quad \Rightarrow \quad z_{2} I_{C}=\left(I-I_{C}\right) z_{3}$
$\Rightarrow\left(z_{2}+z_{3}\right) I_{C}=z_{3} I$
$\therefore \quad I_{C}=\frac{I(20+20 j)}{(20+20 j+20-20 j)}=\frac{I \times 20(1+j)}{20 \times 2}$
$\Rightarrow I_{C}=\frac{I}{\sqrt{2}} \angle 45^{\circ}$
So I_{C} is in lead by phase of 45° or $\frac{\pi}{4}$ rad w.r.t. to total current I.
12. Answer (B)

Hint: $i=I_{0}\left(1-e^{-\frac{t R}{L}}\right)$

Solution :

$$
\begin{aligned}
& i=\frac{\varepsilon}{R}\left(1-e^{-\frac{t R}{L}}\right) \\
& \begin{aligned}
\therefore \Delta q & =\int d q=\int i d t=\frac{\varepsilon}{R} \int_{0}^{2 \tau}\left(1-e^{-\frac{t R}{L}}\right) d t \\
\Rightarrow \Delta q & =\frac{\varepsilon}{R}\left[t+\frac{L}{R} e^{-\frac{t R}{L}}\right]_{0}^{2 \tau} \\
& =\frac{\varepsilon}{R}\left[\frac{2 L}{R}+\frac{L}{R e^{2}}-0-\frac{L}{R}\right] \\
\Rightarrow \Delta q & =\frac{\varepsilon}{R}\left[\frac{L}{R}+\frac{L}{R e^{2}}\right] \\
\Rightarrow \Delta q & =\frac{\varepsilon L}{R^{2}}\left[\frac{e^{2}+1}{e^{2}}\right]
\end{aligned}
\end{aligned}
$$

13. Answer (A)

Hint: $d B=\int B \cdot d s$

Solution :

$\vec{B}=\frac{B_{0}(x \hat{i}+y \hat{j}+z \hat{k})}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}$

Consider a small ring of radius R and width ' $d R$ '.
Then $R=\sqrt{y^{2}+z^{2}}$

$$
\begin{aligned}
& d \phi=\frac{B_{0}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}(x \hat{i}+y \hat{j}+z \hat{k}) \cdot 2 \pi R d R \hat{i} \\
& \Rightarrow d \phi=\frac{B_{0} x \cdot 2 \pi R d R}{\left[R^{2}+x^{2}\right]^{\frac{3}{2}}}=B_{0} \pi x \int \frac{2 R d R}{\left(R^{2}+x^{2}\right)^{\frac{3}{2}}}
\end{aligned}
$$

$\Rightarrow \phi=2 B_{0} \pi x\left[\frac{-1}{\sqrt{R^{2}+x^{2}}}\right]_{0}^{a}$
$\Rightarrow \phi=2 \pi x B_{0}\left[\frac{1}{x}-\frac{1}{\sqrt{a^{2}+x^{2}}}\right]$
14. Answer (C)

Hint: $\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$.
Solution : When viewed from spherical side.
$\frac{1}{v_{1}}+\frac{3}{2 \times 8}=\frac{1}{2 \times 16}$
$\Rightarrow \frac{1}{v_{1}}=\frac{1}{32}-\frac{3}{16}=\frac{-5}{32}$
Image position is $\frac{32}{5} \mathrm{~cm}$ inside the hemisphere from its periphery.

And when viewed from plane side then image is at $\frac{16}{3} \mathrm{~cm}$. Inside the plane surface.
$\therefore \quad \Delta x=16-\frac{16}{3}-\frac{32}{5}=\frac{64}{15} \mathrm{~cm}$
15. Answer (D)

Hint : $E \cdot 2 \pi R=\pi R^{2} \frac{d B}{d t}$.

Solution :

$E \cdot 2 \pi R=\pi R^{2} \times \frac{\Delta B}{\Delta t}$
$\Rightarrow E=\frac{R}{2} \frac{B}{\Delta t}$

$$
d F=d q \cdot E \text { and } d \tau=R E d q
$$

$\Rightarrow \quad \tau=\int R E d q=R E q$
So $\int \tau \cdot d t=\lim _{x \rightarrow 0} \frac{R^{2} q B}{2 \Delta t} \cdot \Delta t=l \omega$
$\Rightarrow \frac{R^{2} q B}{2}=m R^{2} \cdot \omega$
$\Rightarrow \omega=\frac{q B}{2 m}$
16. Answer $A(Q, R, T) ; B(P, R) ; C(S, T) ; D(R, S, T)$

Hint : If field along the dipole, then torque is zero.

Solution :
For option (A): Opposite current means they will repel and dipoles are at 180° torque is zero but rotationally unstable.

For option (B) : Decrement of current in one loop will induced the current in same sense in other loop, so attractive force and no torque.

For option (C) : Force/s are zero but torque is not zero.

For option (D) : Force/s are zero, torque is also zero but dipoles are oppositely aligned so rotationally unstable.
17. Answer $A(Q, S) ; B(P, S) ; C(P, Q, R, S, T) ; D(P, Q$, R, S, T)

Hint : $\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$ and magnification $m=\frac{\mu_{1} v}{\mu_{2} u}$.

Solution :

For option (A) :
 ray seems to diverge always after refraction so it will form virtual and diminished image.

For option (B) :

ray would bend and meet the axis some what at shorter distance. So, it will form real and diminished image.

For option (C) :
 it will try to bend towards normal so, depending upon the extent of bending the refracted ray may meet really or it may seems to be diverging. So it may form real image or virtual image also. Magnification may also vary on being diminished to magnified.

For option (D) :
 upon the extend of bending the refracted ray may meet really or it may seems to be diverging. So, it may form real or virtual image. Also magnification may vary from being diminished to being magnified.
18. Answer (01)

Hint : $\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\left(\frac{\mu_{2}-\mu_{1}}{R}\right)$ use this.
Solution : Let ' x ' be the distance of object from S_{1} so, for first refraction let v_{1} is the image distance then,

$$
\begin{aligned}
& \frac{3}{2 v_{1}}+\frac{4}{3 x}=\frac{-1}{6} \Rightarrow \frac{3}{2 v_{1}}=\frac{-1}{6}-\frac{4}{3 x} \\
& \Rightarrow v_{1}=\frac{-9 x}{8+x}
\end{aligned} \text { i.e. } \frac{9 x}{8+x} \text { from } S_{1} .
$$

Now for $2^{\text {nd }}$ refraction from S_{2} object distance would be $u_{2}=\frac{9 x}{8+x}+1=\frac{8+10 x}{8+x}$
For refraction from $2^{\text {nd }}$ surface S_{2}

$$
\begin{aligned}
& \frac{1}{v_{2}}-\frac{3}{2 u_{2}}=\frac{\left(1-\frac{3}{2}\right)}{-2} \\
& \Rightarrow v_{2}=-(x+1) \\
& \text { So, } \frac{-1}{x+1}+\frac{3(8+x)}{2(8+10 x)}=\frac{1}{4} \\
& \Rightarrow \frac{-16-20 x+24 x+24+3 x^{2}+3 x}{4(x+1)(4+5 x)}=\frac{1}{4} \\
& \Rightarrow 3 x^{2}+7 x+8=5 x^{2}+9 x+4 \\
& \Rightarrow 2 x^{2}+2 x-4=0 \\
& \Rightarrow x^{2}+x-2=0 \\
& \Rightarrow x=1,-2
\end{aligned}
$$

\therefore Object distance from $S_{1}=1 \mathrm{~m}$
19. Answer (08)

Hint : $E_{\text {Ind }}=\left|\frac{d \phi}{d t}\right|$
Solution : $E \cdot 2 \pi r=\pi r^{2} \cdot \frac{d B}{d t}$
$\Rightarrow \vec{E}=\frac{r}{2} \frac{d B}{d t}$
$r=6 \sin 53^{\circ}=6 \times \frac{4}{5}=\frac{24}{5}$

$\therefore \quad \int E d l=\frac{24}{5} \frac{1}{2} \times \frac{1}{3} \times 10$
$\left(\int E d l\right)=8$
20. Answer (03)

Hint : $I=\frac{V}{Z}$ (Here Z is impedance)
Solution : In capacitive circuit $I_{C}=\frac{50 \sin \omega t}{2 R \angle-60^{\circ}}$
$\Rightarrow \quad I_{C}=\frac{25}{R} \sin \left(\omega t+60^{\circ}\right)$
$\therefore \quad V_{C}=\frac{25}{R} \sin \left(\omega t+60^{\circ}\right) \times \sqrt{3} R \angle-90^{\circ}$

$$
=25 \sqrt{3} \sin \left(\omega t-30^{\circ}\right)
$$

$\therefore \omega t-30^{\circ}=90^{\circ}$
Now in inductive circuit $I_{L}=\frac{50 \sin (\omega t)}{2 R \angle 30^{\circ}}$
$\therefore \quad v_{R_{1}}=3 \sqrt{R} \angle 0^{\circ} \frac{50 \sin (\omega t)}{2 R \angle 30^{\circ}}$

$$
=25 \sqrt{3} \sin \left(\omega t-30^{\circ}\right)
$$

$\therefore \quad v_{R_{1}}=25 \sqrt{3}$ volts
$\therefore \quad N=3$

PART - II (CHEMISTRY)

21. Answer (B, D)

Hint : The given complex ion has three geometrical isomers and each of them is optically inactive

(I)

(II)

(III)

Solution : The central metal ion $\left(\mathrm{Cr}^{3+}\right)$ has 3 unpaired electrons. So, magnetic moment of complex is 3.87 BM
22. Answer (C)

Hint: Fact based.
Solution : The following reactions take place in the reaction mixture

$$
\begin{gathered}
\mathrm{MnCl}_{2}+2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \\
\mathrm{MnO}(\mathrm{OH})_{2}+2 \mathrm{NaCl} \\
+\mathrm{H}_{2} \mathrm{O} \\
\begin{array}{c}
2 \mathrm{CrCl}_{3}+10 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Na}_{2} \mathrm{CrO}_{4} \\
+6 \mathrm{NaCl}+8 \mathrm{H}_{2} \mathrm{O}
\end{array}
\end{gathered}
$$

23. Answer (A, B, D)

Hint :

$(\pm) R S$

(S)

(R)

Solution :

24. Answer (A, B, D)

Hint : Fact based and evident from diagram.
Solution : Copper (II) acetate is dimeric and hydrated as $\left[\mathrm{Cu}\left(\mathrm{OCOCH}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right]_{2}$.
25. Answer (B, C)

Hint :

Solution :

26. Answer (B)

Hint : The solution (A) contains I^{-}ions, as seen from the following reaction

$$
\underset{(\mathrm{A})}{2 \mathrm{I}^{-}}+\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow \underset{\substack{\text { (Scarlet ppt.) } \\ \text { (B) }}}{\mathrm{HgI}_{2}}+2 \mathrm{NO}_{3}^{-}
$$

Solution : $\left.\mathrm{HgI}_{2}+2 \mathrm{KI} \longrightarrow \underset{\text { (C) }}{ } \mathrm{K}_{2} \underset{\mathrm{HgI}_{4}}{[}\right]$
The hybridisation of $\mathrm{Hg}^{2+}\left(5 d^{10} 6 s^{0}\right)$ in (C) is $s p^{3}$. Therefore, shape of complex anion in (C) is tetrahedral.
27. Answer (C)

Hint : The reagent (X) must be $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3}$ which reacts with I^{-}ions to give black ppt. of Bil_{3}

Solution :

$$
3 \mathrm{I}^{-}+\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \longrightarrow \underset{\text { Black ppt. }}{\mathrm{Bil}_{3}}+3 \mathrm{NO}_{3}^{-}
$$

28. Answer (D)

Hint : The black ppt. of Bil_{3} when heated in presence of water turns orange due to the formation of BiOl

Solution :

29. Answer (D)

Hint: CO is π^{*} acceptor and σ donor.
Solution : In metal carbonyl, the C-atom of CO ligand uses its filled orbital and metal uses its vacant orbital to form σ type of co-ordinate covalent bond. Simultaneously, the metal uses its filled orbital and CO uses its π-type of antibonding molecular orbital to form π-type of co-ordinate bond.

30. Answer (A)

Hint: CO form strong field ligand with metals.

Solution :

$s p^{3}$ bybrideation, diamagnetic
(II) $[\mathrm{Fe}(\mathrm{CO})]$

Fe: $3 d^{\circ} 4 s^{2}$
$[\mathrm{Fe}(\mathrm{CO})]$

dsp' hybridisation, damagnetic
(III) $[\mathrm{V}(\mathrm{CO})]$
$\mathrm{V}^{\prime} 3 \mathrm{c}^{4} 4 \mathrm{~s}^{\prime}$
[V(CO)]

d'sp ${ }^{\prime}$ hybridisation, paramagnetic
(IV) $[\mathrm{Cr}(\mathrm{CO})]$ $\mathrm{Cr}^{0}: 3 d^{d} 4 s^{+}$
[$\left.\mathrm{Cr}(\mathrm{CO})_{4}\right]$

ofsp, hybridisation, diamagnetic

So, (II) and (IV) are inner orbital complexes and diamagnetic.
31. Answer (B)

Hint : Greater the electron density on metal, lesser will be the $\mathrm{C}-\mathrm{O}$ bond strength.

Solution :

In the given metal carbonyls i.e. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$, $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$ and $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$ the number of electron pairs available are 5,4 and 3 respectively. So, the share of $d \pi$ electrons from Ni, Fe and Mn for back donating to each CO molecule in these complexes will be $5 / 4$, $4 / 5$ and $3 / 6$. Hence, $C-O$ bond length in these complexes will be in the order of $(\mathrm{I})>$ (II) $>$ (III).
32. Answer (B)

Hint : Co-ordination compound (X) must be cis isomer having permanent dipole moment since it dissolves in polar solvents.

Solution : Co-ordination compound (Y) must be trans isomer which is non-polar since it dissolves in non-polar solvents.
33. Answer (A)

Hint : Fact based.

Solution :

34. Answer (C)

Hint : Hexachloridoplatinic acid is formed when platinum reacts with aqua regia

Solution : $3 \mathrm{Pt}+16 \mathrm{H}^{+}+4 \mathrm{NO}_{3}^{-}+18 \mathrm{Cl}^{-} \longrightarrow$

$$
3\left[\mathrm{PtCl}_{6}\right]^{2-}+4 \mathrm{NO}+8 \mathrm{H}_{2} \mathrm{O}
$$

35. Answer (B)

Hint :

Solution :

(R)

The H -atom attached to $\beta \mathrm{C}$-atom with respect to Br -atom is more acidic in (Q) than in (P). Therefore, the transition state formed in elimination of HBr from (Q) is more stable than that from (P). So, (Q) reacts faster than (P) in the given elimination reaction.
36. Answer A(P, R, T); B(P, R); C(S, T); D(Q, R)

Hint :

$$
\begin{array}{r}
\mathrm{CoCl}_{2}+7 \mathrm{KNO}_{2}+2 \mathrm{CH}_{3} \mathrm{COOH} \rightarrow \underset{\mathrm{~K}_{3}}{\left.\mathrm{~K}_{\text {Yellow ppt. }}^{\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right.}\right]} \\
+2 \mathrm{KCl}+2 \mathrm{CH}_{3} \mathrm{COOK}+\underset{\text { Neutral gas }}{\mathrm{NO}}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{H}_{2} \mathrm{~S}+2 \mathrm{HNO}_{2} \rightarrow \mathrm{~S}+\underset{\text { Neutral gas }}{2 \mathrm{NO}}+2 \mathrm{H}_{2} \mathrm{O}
\end{array}
$$

Solution :

$4 \mathrm{FeCl}_{3}+3 \mathrm{~K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \longrightarrow \mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}+12 \mathrm{KCl}$

37. Answer $A(R, T) ; B(P, S, T) ; C(P, Q, S) ; D(P, Q, S)$

Hint : CN^{-}is a strong field ligand and F^{-}is weak field ligand.

Solution :

(A) $[\mathrm{Ni}(\mathrm{CN}) 4]^{2-}$

Hybridisation

$$
: d s p^{2}
$$

Shape
: Square planar
Magnetic behaviour : Diamagnetic
(B) $\left[\mathrm{NiF}_{6}\right]^{2-}$

$d^{2} s p^{3}$ hybridisation; Octahedral; Diamagnetic
[Note : As oxidation state of nickel ion increases, the splitting energy increases. Thus F^{-}ions cause pairing of unpaired electron]
(C) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$

$d^{2} s p^{3}$ hybridisation; Octahedral; Paramagnetic
(D) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

$d^{2} s p^{3}$ hybridisation; Octahedral; Paramagnetic
38. Answer (08)

Hint : The possible stereoisomers of the given complex ion are 8.

Solution :

Meso-1

Meso-II
39. Answer (06)

Hint : Test for G-II cations.
Solution : Only $\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}, \mathrm{Bi}^{3+}, \mathrm{Sn}^{2+}, \mathrm{As}^{3+}$ and Cd^{2+} ions will get precipitated on passing $\mathrm{H}_{2} \mathrm{~S}$ gas in presence of dil HCl .
40. Answer (08)

Hint : The total number of substitution (by $\mathrm{S}_{\mathrm{N}} 1$) and elimination (by E_{1}) products formed in the given reaction are 8.
Solution :

PART - III (MATHEMATICS)
41. Answer (A, D)

Hint: Use property $\int_{a}^{b} f(a+b-x) d x=\int_{a}^{b} f(x) d x$
Solution: $I=\int_{0}^{\pi / 2} t(\sin 2 x) \sin x d x$
$I=\int_{0}^{\pi / 2} f(\sin (\pi-2 x)) \cos x d x$
$I=\int_{0}^{\pi / 2} t(\sin 2 x) \cos x d x$
Add (i) and (ii) we get

$$
\begin{aligned}
21 & =\int_{0}^{\pi / 2} f(\sin 2 x)(\sin x+\cos x) d x \\
& =\sqrt{2} \int_{0}^{\pi / 2} f(\sin 2 x) \sin \left(x+\frac{\pi}{4}\right) d x
\end{aligned}
$$

Put $x=\frac{\pi}{4}-\theta$
$\Rightarrow d x=-d \theta$

$$
=\sqrt{2} \int_{+\pi / 4}^{-\pi / 4} f\left(\sin \left(2\left(\frac{\pi}{4}-\theta\right)\right)\right) \cos \theta(-d \theta)
$$

$$
=\sqrt{2} \int_{\pi / 4}^{-\pi / 4} f(\cos 2 \theta) \cos \theta(-d \theta)
$$

$$
=2 \sqrt{2} \int_{0}^{\pi / 4} f(\cos 2 \theta) \cos \theta d \theta
$$

$I=\sqrt{2} \int_{0}^{\pi / 4} f(\cos 2 \theta) \cos \theta d \theta$
42. Answer (B, C)

Hint :
Minimize $\int_{x_{1}}^{x_{2}}\left(\left(x^{2}+2 x-3\right)-(k x+1)\right) d x$ where x_{1} and x_{2} are intersection points of given curves.
Solution : $k x+1=x^{2}+2 x-3$
$\Rightarrow x^{2}+(2-k) x-4=0$

$$
\begin{align*}
\Rightarrow \quad x & =\frac{k-2 \pm \sqrt{(k-2)^{2}-4(-4)}}{2} \\
& =\frac{k-2 \pm \sqrt{k^{2}-4 k+20}}{2}<\overbrace{x_{2}} \tag{i}
\end{align*}
$$

$$
\begin{align*}
A & =\left|\int_{x_{1}}^{x_{2}}\left(\left(x^{2}+2 x-3\right)-(k x+1)\right) d x\right| \\
& =\left|\frac{x^{3}}{3}+\frac{(2-k) x^{2}}{2}-4 x\right|_{x_{1}}^{x_{2}} \\
& =\left|\frac{x_{2}^{3}-x_{1}^{3}}{3}+\left(\frac{2-k}{2}\right)\left(x_{2}^{2}-x_{1}^{2}\right)-4\left(x_{2}-x_{1}\right)\right| \tag{ii}
\end{align*}
$$

From (i) $x_{1}+x_{2}=k-2, x_{1} x_{2}=-4$ and $\left|x_{1}-x_{2}\right|$ $=\sqrt{k^{2}-4 k+20}$ and using these results in (ii) we get

$$
\begin{aligned}
& =\left\lvert\, \frac{\left(x_{2}-x_{1}\right)\left(\left(x_{1}+x_{2}\right)^{2}-x_{1} x_{2}\right)}{3}+\left(\frac{2-k}{2}\right)\right. \\
& =\left|\sqrt{k^{2}-4 k+20}\left(\frac{\left(x_{2}-x_{1}\right)\left(x_{1}+x_{2}\right)-4\left(x_{2}-x_{1}\right) \mid}{3}+\left(\frac{2-k}{2}\right)(k-2)-4\right)\right| \\
& =\left|\sqrt{k^{2}-4 k+20}\left(\frac{2(k-2)^{2}+8-3(k-2)^{2}-24}{6}\right)\right| \\
& =\left|\sqrt{k^{2}-4 k+20}\left(\frac{-(k-2)^{2}}{6}-\frac{8}{3}\right)\right| \\
& \Rightarrow A_{\min } \text { at } k=2
\end{aligned}
$$

and $\quad A_{\min }=\left|\sqrt{16}\left(\frac{-8}{3}\right)\right|=\frac{32}{3}$ sq. units
43. Answer (A, B, D)

Hint : Form differential equation using the equation of tangent at (x, y) i.e.

$$
Y-y=\frac{d y}{d x}(X-x)
$$

Solution :

Equation of tangent at $P(x, y)$
$Y-y=\frac{d y}{d x}(X-x)$
$\beta=y-x \frac{d y}{d x}$
Hence $\quad \frac{x}{2}=\frac{y-x \frac{d y}{d x}+y}{2}$
$\Rightarrow \quad x=2 y-x \frac{d y}{d x}$
$\Rightarrow \frac{d y}{d x}-\frac{2 y}{x}=-1$
$\Rightarrow d\left(\frac{y}{x^{2}}\right)=-\frac{1}{x^{2}} d x$
$\Rightarrow \frac{y}{x^{2}}=\frac{1}{x}+c$
$\Rightarrow y=x-x^{2}$
44. Answer (A, D)

Hint : $\int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+c$
Solution : $\int \frac{x^{4} d x}{1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}}$
$=4!x-4!\ln \left(1+\frac{x}{1!}+\frac{x^{2}}{2!}+\ldots+\frac{x^{4}}{4!}\right)+c$
$\Rightarrow k=4, f(1)=\frac{15}{24}$ and $f(0)=1$
45. Answer (A, B, C)

Hint :
$\int \cos x d x=\sin x+c$ and $\int \sin x d x=-\cos x+c$
Solution :

$$
k^{2} \frac{\sin 3 x}{3}+\frac{k^{2}}{2} \sin x-\cos x-\left.2 k \sin x\right|_{0} ^{\pi / 2} \leq 1
$$

$\Rightarrow\left(-\frac{k^{2}}{3}+\frac{k^{2}}{2}-0-2 k\right)-(0+0-1-0) \leq 1$
$\Rightarrow+k^{2}-12 k+6 \leq 6$
$\Rightarrow k(k-12) \leq 0$
$k \in[0,12]$
46. Answer (B)
47. Answer (B)
48. Answer (C)

Hint for Q. No. 46 to 48

$$
\frac{d}{d x} \int_{f(x)}^{g(x)} h(x)=h(g(x)) \cdot g^{\prime}(x)-h(f(x)) \cdot f^{\prime}(x)
$$

Solution for Q. Nos. 46 to 48
Using Leibnitz's rule
$f(x)=x^{2}-x^{2} f(x)$
$\Rightarrow f(x)=\frac{x^{2}}{1+x^{2}}(f(x)$ is even function)
$g(x)=f(x)-1 \Rightarrow g(x)=\frac{x^{2}-1-x^{2}}{1+x^{2}}=-\frac{1}{1+x^{2}}$
Range of $g(x) \in[-1,0)$

$$
\begin{aligned}
I & =\int_{0}^{2}\left[-\frac{1}{g(x)}\right]^{d x}=\int_{0}^{2} 1+\left[x^{2}\right] d x \\
& =\left.x\right|_{0} ^{2}+\int_{0}^{1} 0 d x+\int_{1}^{\sqrt{2}} d x+\int_{\sqrt{2}}^{\sqrt{3}} 2 d x+\int_{\sqrt{3}}^{2} 3 d x \\
& =2+0+(\sqrt{2}-1)+2(\sqrt{3}-\sqrt{2})+3(2-\sqrt{3}) \\
& =7-\sqrt{2}-\sqrt{3} \\
\Rightarrow & {[/=3}
\end{aligned}
$$

49. Answer (A)
50. Answer (D)
51. Answer (D)

Hint for Q. No. 49 to 51
$\frac{d D}{d t} \propto D \Rightarrow \frac{d D}{d t}=k D$ (where k is constant of proportionality)
Solution for Q. No. 49 to 51 :
Let data at any time ' p ' is D

$$
\begin{aligned}
& \frac{d D}{d t} \propto D \\
& \Rightarrow \quad \frac{d D}{d t}=k D \\
& \Rightarrow \quad \int_{500}^{D} \frac{d D}{D}=\int_{0}^{t} k d t
\end{aligned}
$$

$\left.\Rightarrow \ln D\right|_{500} ^{D}=k t$
$\Rightarrow \frac{D}{500}=e^{k t}$
$\Rightarrow D=500 e^{k t}$
At $t=2, D=0.9 \times 500$
$\therefore 0.9 \times 500=500 e^{k 2}$
$\Rightarrow 0.9=e^{2 k}$
$\Rightarrow 2 k=\ln 0.9$
$\Rightarrow k=\frac{\ln (0.9)}{2}$
$\Rightarrow \quad D=500 e^{\left(\frac{1}{2}\right)(\ln (0.9)) t}$
At $t=4 \mathrm{~h}$, if $D=\frac{500}{2}$ in (i)

$$
D=500 e^{2 \ln (0.9)}
$$

$\Rightarrow \frac{1}{2}=e^{\frac{1}{2} \ln (0.9) t}$
$\Rightarrow \quad-\ln 2=\frac{1}{2} \ln (0.9) t$
$\Rightarrow t=\frac{2 \ln \left(\frac{1}{2}\right)}{\ln (0.9)}$
52. Answer (B)

Hint : Put $\sin 2 x=2 \sin x \cos x$ and make partial fractions
Solution : $\int \frac{2 \sin x(1-\cos x) d x}{2 \sin x \cos x(1+\cos x)}$
$\Rightarrow \int \frac{1-\cos x d x}{(1+\cos x) \cos x}$
$\Rightarrow \int\left(\frac{1}{\cos x}-\frac{2}{1+\cos x}\right) d x$
$\Rightarrow \int \sec x d x-2 \int \frac{d x}{2 \cos ^{2} \frac{x}{2}}$
$\Rightarrow \int \sec x d x-\int \sec ^{2} \frac{x}{2} d x$
$\Rightarrow \ln |\sec x+\tan x|-2 \tan \frac{x}{2}+c$
53. Answer (C)

Hint: $\lim _{n \rightarrow \infty} \sum_{r=1}^{k n} f\left(\frac{r}{n}\right) \cdot \frac{1}{n}=\int_{0}^{k} f(x) d x$
Solution : Let $L=\lim _{n \rightarrow \infty} \sum_{r=1}^{4 n} \frac{1}{r+\sqrt{r n}}$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \sum_{r=1}^{4 n} \frac{1}{n}\left(\frac{1}{\left(\frac{r}{n}\right)+\sqrt{\frac{r}{n}}}\right) \\
& =\int_{0}^{4} \frac{d x}{(x+\sqrt{x})}
\end{aligned}
$$

Put $x=t^{2}$
$\Rightarrow d x=2 t d t$
$\Rightarrow \quad L=\int_{0}^{2} \frac{2 t d t}{t(1+t)}=\left.2 \ln (1+t)\right|_{0} ^{2}=2 \ln 3=\ln 9$
54. Answer (C)

Hint: Area $=\int_{\alpha}^{\beta}(f(x)-g(x)) d x$, where α and β are intersection points of given curves
Solution :

$$
\begin{aligned}
A_{1} & =\int_{0}^{2} 8-\left(2 x-x^{2}\right) d x+\int_{2}^{4} 8-\left(x^{2}-2 x\right) d x \\
& =8 x-x^{2}+\left.\frac{x^{3}}{3}\right|_{0} ^{2}+8 x-\frac{x^{3}}{3}+\left.x^{2}\right|_{2} ^{4} \\
& =\left(16-4+\frac{8}{3}\right)+\left(32-\frac{64}{3}+16-16+\frac{8}{3}-4\right)
\end{aligned}
$$

$$
=\frac{44}{3}+\left(28-\frac{56}{3}\right)=\frac{44}{3}+\frac{28}{3}=\frac{72}{3}=24 \text { sq.units }
$$

$$
A_{2}=\int_{-2}^{0} 8-\left(x^{2}-2 x\right) d x=8 x-\frac{x^{3}}{3}+\left.x^{2}\right|_{-2} ^{0}
$$

$$
=0-\left(-16+\frac{8}{3}+4\right)=12-\frac{8}{3}=\frac{28}{3} \text { sq. units }
$$

$$
k=\frac{24}{28} \cdot 3 \quad \Rightarrow \quad[k]=2
$$

55. Answer (C)

Hint :
$f(x) g^{\prime}(y) d y+f^{\prime}(x) g(y) d x=\int d(f(x) g(y))$
Solution : $x d y+\cos y \ln x d y=6 x^{2} d x-\sin y d x$
$\Rightarrow \quad d y+\cos y \ln x d y=6 x d x-\frac{\sin y}{x} d x$
$\Rightarrow \quad d y+\cos y \ln x d y+\frac{\sin y d x}{x}=6 x d x$
$\Rightarrow \int d y+\int d(\sin y \ln x)=6 \int x d x$
$\Rightarrow y+\sin y \ln x=3 x^{2}+c$
For $y(1)=3 \Rightarrow 3+0=3+c \Rightarrow c=0$
$\Rightarrow y+\sin y \ln x=3 x^{2}$
Put $x=e$ we get
$y+\sin y=3 e^{2}$
56. Answer $A(P, Q, R) ; B(P, Q, R) ; C(S, T) ; D(P, Q, R, S, T)$

Hint : Apply estimation of integrals
Solution : $l_{1}=\int_{0}^{1} e^{x^{2}} d x \Rightarrow 1<l<e-1$

$$
\begin{aligned}
I_{2} & =\int_{0}^{\pi / 2} \frac{\sin x}{x} d x \Rightarrow \frac{2}{\pi}<I<\frac{\pi}{2} \\
I_{3} & =\left|\int_{0}^{\pi / 2}(\sin x) d x\right|=\frac{\pi}{2} \ln 2 \\
& =\frac{\pi}{2} \times(2.303) \times(0.301) \cong 0.9 \\
I_{4} & =0<\int_{0}^{1} \frac{x^{7}}{\left(1+x^{8}\right)^{1 / 7}} d x<x^{7} \\
\Rightarrow & 0<I_{4}<\frac{1}{8}
\end{aligned}
$$

57. Answer $A(Q, R, S, T) ; B(Q, R, S, T) ; C(T)$;
$D(P, Q, R, S)$
Hint: Area between two curve $f(x)$ and $g(x)$
$=\int_{\alpha}^{\beta}(f(x)-g(x)) d x$, where α, β are the point of intersection.

Solution :

(A) $y=|x| x$

$$
A=\int_{-1}^{0}-x^{2} d x+\int_{0}^{1} x^{2} d x=\frac{1}{3}+\frac{1}{3}=\frac{2}{3} \text { sq. units }
$$

(B)

$$
\begin{aligned}
& A=\int_{\pi / 4}^{5 \pi / 4}(\sin x-\cos x) d x=\left.(-\cos x-\sin x)\right|_{\pi / 4} ^{5 \pi / 4} \\
&=\left(+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)-\left(-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right) \\
&=2 \sqrt{2} \text { sq. units }
\end{aligned}
$$

(C) $[|x|][|y|]=2$

$A=8$ sq. units
(D)

Required Area $=4 A=4$ (Area of semicircle of $C_{1}-\left(\right.$ Area of quarter circle of $\left.C_{2}\right)+$ Area of $\left.\triangle A O B\right)$

$$
\begin{aligned}
& =4\left(\frac{\pi(\sqrt{2})^{2}}{2}-\frac{\pi(2)^{2}}{4}+\frac{1}{2} \cdot 2 \cdot 2\right) \\
& =4(\pi-\pi+2)=8 \text { sq. units }
\end{aligned}
$$

58. Answer (02)

Hint: If $f(x)=t$
$\Rightarrow f^{\prime}(x) d x=d t$
Solution: $\int \frac{e^{2 x}}{\left(e^{2 x}+1\right)^{2}} d x$
Put $e^{2 x}+1=t$
2. $e^{2 x} d x=d t$
$\Rightarrow \frac{1}{2} \int \frac{d t}{t^{2}}=-\frac{1}{2} \frac{1}{t}+c=-\frac{1}{2\left(e^{2 x}+1\right)}+c \Rightarrow k=2$
59. Answer (07)

Hint : Put $y=v x$ and solve as homogeneous differential equation.
Solution : Put $y=v x$
$u+x \frac{d u}{x}=\frac{v}{1+v^{2}}$
$\Rightarrow \quad x \frac{d u}{d x}=\frac{v-v-v^{3}}{1+v^{2}}$
$\Rightarrow \int \frac{(1+v)^{2}}{v^{3}} d v=-\int \frac{d x}{x}$
$\Rightarrow-\frac{1}{2 v^{2}}+\ln u=-\ln x+c$
$\Rightarrow-\frac{x^{2}}{2 y^{2}}+\ln \left(\frac{y}{x}\right)+\ln x=c \Rightarrow-\frac{1}{2}$
And $\frac{-a^{2}}{2 e^{2}}+1=-\frac{1}{2} \Rightarrow \frac{a^{2}}{3}=e^{2}$
60. Answer (00)

Hint : Differentiate expression of area using Leibnitz's Rule
Solution : Given
$\alpha^{3}+8=\int_{2}^{a}\left(x^{2}+2-f(x)\right) d x$
Differentiate both sides we get
$3 \alpha^{2}=\alpha^{2}+2-f(\alpha)$
$\Rightarrow f(\alpha)=-2 \alpha^{2}+2$
$\Rightarrow f(x)=-2 x^{2}+2$
$\Rightarrow x_{0}=0$

All India Aakash Test Series for JEE (Advanced)-2020
 TEST - 3A (Paper-1) - Code-B

Test Date : 06/10/2019

ANSWERS

PHYSICS

1. (A, D)
2. (A, B)
3. (A, C, D)
4. (A, D)
5. (B, C)
6. (D)
7. (C)
8. (B)
9. (B)
10. (A)
11. (D)
12. (D)
13. (C)
14. (A)
15. (B)
16. $A \rightarrow(Q, S)$
$B \rightarrow(P, S)$
$\mathrm{C} \rightarrow(\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T})$
$D \rightarrow(P, Q, R, S, T)$
17. $A \rightarrow(Q, R, T)$
$B \rightarrow(P, R)$
$\mathrm{C} \rightarrow(\mathrm{S}, \mathrm{T})$
$D \rightarrow(R, S, T)$
18. (03)
19. (08)
20. (01)

CHEMISTRY

21. (B, C)
22. (A, B, D)
23. (A, B, D)
24. (C)
25. (B, D)
26. (B)
27. (C)
28. (D)
29. (D)
30. (A)
31. (B)
32. (B)
33. (C)
34. (A)
35. (B)
36. $A \rightarrow(R, T)$
$B \rightarrow(P, S, T)$
$C \rightarrow(P, Q, S)$
$\mathrm{D} \rightarrow(\mathrm{P}, \mathrm{Q}, \mathrm{S})$
37. $A \rightarrow(P, R, T)$
$B \rightarrow(P, R)$
$\mathrm{C} \rightarrow(\mathrm{S}, \mathrm{T})$
$\mathrm{D} \rightarrow(\mathrm{Q}, \mathrm{R})$
38. (08)
39. (06)
40. (08)

MATHEMATICS
41. (A, B, C)
42. (A, D)
43. (A, B, D)
44. (B, C)
45. (A, D)
46. (B)
47. (B)
48. (C)
49. (A)
50. (D)
51. (D)
52. (C)
53. (C)
54. (C)
55. (B)
56. $A \rightarrow(Q, R, S, T)$
$B \rightarrow(Q, R, S, T)$
$\mathrm{C} \rightarrow(\mathrm{T})$
$\mathrm{D} \rightarrow(\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S})$
57. $A \rightarrow(P, Q, R)$
$B \rightarrow(P, Q, R)$
$\mathrm{C} \rightarrow(\mathrm{S}, \mathrm{T})$
$D \rightarrow(P, Q, R, S, T)$
58. (00)
59. (07)
60. (02)

HINTS \& SOLUTHONS

PART - I (PHYSICS)

1. Answer (A, D)

Hint : $|m|=\frac{|y|}{|x|}$

Solution :

Let u_{0} be the speed of object and v be the speed of image and x and y are the respective distance of object and image, then
Magnification $|m|=\frac{|y|}{|x|}$
Also, $v \sin \beta=|m| u_{0} \sin \alpha$
$\therefore \quad \tan \beta=\frac{|x|}{|y|} \tan \alpha$
Now $\frac{1}{y}+\frac{1}{x}=\frac{1}{f}$
$\Rightarrow \frac{\tan \beta}{x \tan \alpha}+\frac{1}{x}=\frac{1}{f}$
$\Rightarrow x=f \frac{(\tan \alpha+\tan \beta)}{\tan \alpha}$

Also, $\frac{1}{y}+\frac{\tan \alpha}{y \tan \beta}=\frac{1}{f}$
$\Rightarrow y=\frac{f(\tan \alpha+\tan \beta)}{\tan \beta}$
2. Answer (A, B)

Hint : $n_{1} \sin i=n_{2} \sin r$.
Solution :

Let SPM be the spherical surface separating two media with refractive index n_{1} and n_{2} respectively.
So for refraction at point A
$n_{1} \sin i=n_{2} \sin r \Rightarrow \frac{\sin i}{\sin r}=\frac{n_{2}}{n_{1}}$
Take $|C P|=R, \quad|O C|=r_{1}$ and $|I C|=r_{2}$
$\angle A I C=\beta, \quad \angle A O C=\alpha$ then
in $\triangle A O C, \frac{\sin i}{\sin \alpha}=\frac{r_{1}}{|R|}$
Also in $\triangle A I C \frac{\sin r}{\sin \beta}=\frac{r_{2}}{|R|}$
For a very particular case when $\angle \alpha=\angle r$ and $\angle \beta=\angle i$ then equation (ii) will become.
$\frac{\sin i}{\sin \alpha}=\frac{r_{1}}{|R|}=\frac{n_{2}}{n_{1}}$
$\Rightarrow \quad r_{1}=\frac{n_{2}}{n_{1}}|R|$
and equation (iii) will become $\frac{\sin r}{\sin B}=\frac{r_{2}}{|R|}=\frac{n_{1}}{n_{2}}$
$\Rightarrow|r|=\frac{n_{1}}{n_{2}}|R|$
Irrespective of the point A being paraxial or marginal. Hence all ray emanating from O seems to be emanating from i and vice-versa.
3. Answer (A, C, D)

Hint :

If there is no dissipating force then the system will oscillate.
Solution : If there is no dissipating force/s then the system will oscillate.
But if there is some small resistance then
$m g-\frac{v B^{2} \ell^{2}}{r}=\frac{m d v}{d t}$
Before it attains the steady constant speed, $\frac{d v}{d t}$ is positive. That means part of the work done by gravity is appearing as increase in kinetic energy and rest are dissipating as heat energy.
Finally $\frac{d v}{d t}=0 . \quad$ i.e. $\quad v_{0}=\frac{m g r}{B^{2} \ell^{2}}$
4. Answer (A, D)

Hint: At resonance $|\omega L|=\frac{1}{|\omega C|}$
Solution : At resonance $|\omega L|=\frac{1}{|\omega C|}$
$V_{L}=60$ volts
$V_{R}=80$ volts

Clearly, $\frac{V_{L}}{V_{R}}=\frac{\omega L}{R} \quad \Rightarrow \quad \frac{60}{80}=\frac{\omega L}{240}$
$\Rightarrow \omega L=180 \Omega \quad \Rightarrow \quad L=\frac{180}{90}=2 \mathrm{H}$
Similarly $\frac{1}{\omega C}=180 \Rightarrow C=\frac{1}{90 \times 180}=\frac{1}{16200} \mathrm{~F}$
For current to lag by $45^{\circ}|R|=\left|\omega L-\frac{1}{\omega C}\right|$
$\Rightarrow \omega^{2} L C-1=240 \omega C$
$\Rightarrow \omega^{2}-120 \omega-8100=0$
$\therefore \quad \omega=60+10 \sqrt{117} \mathrm{rad} / \mathrm{s}$
5. Answer (B, C)

Hint : $\int F d t=\int i B \ell \cdot d t$
Solution : Let i be the current at any time during short changes then

$F(t)=i \ell B$ and impulse $\int F(t) d t=\int \ell B i d t$
$\Rightarrow m v=\ell B \Delta q \Rightarrow \Delta q=\frac{m v}{B \ell}$
Work done by battery $w_{b}=\frac{\varepsilon m v}{B \ell}$
$=\Delta W_{\text {loss }}=\frac{\varepsilon m v}{B \ell}-\frac{1}{2} m v^{2}$
6. Answer (D)
7. Answer (C)
8. Answer (B)

Hint: $\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$

Solution for Q. Nos. 6 to 8

For Q. No. 6

$\frac{1}{V_{1}}+\frac{\mu}{25}=\frac{(1-\mu)}{-50}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{1}{V_{1}}+\frac{3}{2 \times 25}=\frac{1}{100} \\
& \Rightarrow \quad \frac{1}{V_{1}}=\frac{1}{100}-\frac{6}{100}
\end{aligned}
$$

$$
\Rightarrow \quad \frac{1}{V_{1}}=\frac{-5}{100} \quad \therefore \quad V_{1}=-20 \mathrm{~cm}
$$

\therefore Shifting in $1^{\text {st }}$ case is $25-20=5 \mathrm{~cm}$
For Q. No. 7

$$
\begin{aligned}
& \frac{1}{V_{2}}+\frac{\mu}{75}=\frac{(1-\mu)}{-50} \\
& \Rightarrow \frac{1}{V_{2}}=\frac{1}{100}-\frac{3}{2 \times 75} \\
& \Rightarrow \frac{1}{V_{2}}=\frac{1}{100}-\frac{1}{50} \\
& \Rightarrow \frac{1}{V_{2}}=\frac{-1}{100} \\
& \therefore V_{2}=-100
\end{aligned}
$$

Shifting $\Rightarrow 100-75=25 \mathrm{~cm}$
For Q. No. 8

$\frac{\mu}{V_{3}}-\frac{1}{\infty}=\frac{(\mu-1)}{50}$
$\therefore \quad \frac{3}{2 V_{3}}=\frac{1}{2 \times 50}$
$\Rightarrow V_{3}=150 \mathrm{~cm}$
So for mirror (at plane surface) object distance is +75 cm .
\therefore Image would be at 75 cm opposite to silvered surface which falls on the periphery of the sphere.
9. Answer (B)
10. Answer (A)
11. Answer (D)

Hint: $I=\frac{V}{z}$ (Here z is impedance)
Solution for Q. Nos. 9 to 11

$100 \mathrm{~V}, 50 \mathrm{~Hz}$
$X_{L}=\omega L=2 \pi \times 50 \frac{1}{5 \pi}=20 \Omega$
$X_{C}=\frac{1}{\omega C}=\frac{1 \pi \times 10^{6}}{2 \pi \times 50 \times 500}=20 \Omega$
Let $z_{1}=20+20 j ; z_{2}=20-20 j ; z_{3}=20+20 j$
$\therefore \frac{1}{z}=\frac{1}{z_{2}}+\frac{1}{z_{3}}=\frac{1}{20-20 j}+\frac{1}{20+20 j}$

$$
=\frac{20 j+20+20-20 j}{400+400}
$$

$$
\Rightarrow \quad z^{\prime}=\frac{800}{40}=20 \Omega
$$

$$
\therefore \quad z_{\mathrm{eq}}=20+20 j+20=40+20 j
$$

$\therefore|z|=20 \sqrt{5} \cdot \tan \theta=\frac{1}{2} \quad \cos \theta=\frac{2}{\sqrt{5}}$
$\therefore \quad I=\frac{100 \angle 0}{20 \sqrt{5} \angle \theta}=\sqrt{5} \Rightarrow I_{0}=\sqrt{10}$
Current amplitude $=\sqrt{10}$ ampere
$\therefore \quad$ Power dissipation $=I_{\mathrm{rms}} \cdot V_{\mathrm{rms}} \cos \phi$

$$
\begin{aligned}
& \Rightarrow \quad z_{2} I_{C}=z_{3} I_{\mathrm{L}} \quad \Rightarrow \quad z_{2} I_{C}=\left(I-I_{C}\right) z_{3} \\
& \Rightarrow\left(z_{2}+z_{3} I_{C}=z_{3} I\right. \\
& \therefore \quad I_{C}=\frac{I(20+20 j)}{(20+20 j+20-20 j)}=\frac{I \times 20(1+j)}{20 \times 2} \\
& \Rightarrow \quad I_{C}=\frac{I}{\sqrt{2}} \angle 45^{\circ}
\end{aligned}
$$

So I_{C} is in lead by phase of 45° or $\frac{\pi}{4}$ rad w.r.t. to total current l.
12. Answer (D)

Hint: $E \cdot 2 \pi R=\pi R^{2} \frac{d B}{d t}$.

Solution :

$E \cdot 2 \pi R=\pi R^{2} \times \frac{\Delta B}{\Delta t}$
$\Rightarrow E=\frac{R}{2} \frac{B}{\Delta t}$

$$
d F=d q \cdot E \text { and } d \tau=R E d q
$$

$\Rightarrow \quad \tau=\int R E d q=R E q$
So $\int \tau \cdot d t=\lim _{x \rightarrow 0} \frac{R^{2} q B}{2 \Delta t} \cdot \Delta t=I \omega$
$\Rightarrow \frac{R^{2} q B}{2}=m R^{2} \cdot \omega$
$\Rightarrow \omega=\frac{q B}{2 m}$
13. Answer (C)

Hint: $\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$.
Solution : When viewed from spherical side.
$\frac{1}{v_{1}}+\frac{3}{2 \times 8}=\frac{1}{2 \times 16}$
$\Rightarrow \frac{1}{v_{1}}=\frac{1}{32}-\frac{3}{16}=\frac{-5}{32}$
Image position is $\frac{32}{5} \mathrm{~cm}$ inside the hemisphere from its periphery.
And when viewed from plane side then image is at $\frac{16}{3} \mathrm{~cm}$. Inside the plane surface.
$\therefore \quad \Delta x=16-\frac{16}{3}-\frac{32}{5}=\frac{64}{15} \mathrm{~cm}$
14. Answer (A)

Hint: $d B=\int B \cdot d s$

Solution :

$$
\vec{B}=\frac{B_{0}(x \hat{i}+y \hat{j}+z \hat{k})}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}
$$

Consider a small ring of radius R and width ' $d R$ '.

Then $R=\sqrt{y^{2}+z^{2}}$

$$
\begin{aligned}
& d \phi=\frac{B_{0}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}(x \hat{i}+y \hat{j}+z \hat{k}) \cdot 2 \pi R d R \hat{i} \\
& \Rightarrow d \phi=\frac{B_{0} x \cdot 2 \pi R d R}{\left[R^{2}+x^{2}\right]^{\frac{3}{2}}}=B_{0} \pi x \int \frac{2 R d R}{\left(R^{2}+x^{2}\right)^{\frac{3}{2}}} \\
& \Rightarrow \phi=2 B_{0} \pi x\left[\frac{-1}{\sqrt{R^{2}+x^{2}}}\right]_{0}^{a} \\
& \Rightarrow \phi=2 \pi x B_{0}\left[\frac{1}{x}-\frac{1}{\sqrt{a^{2}+x^{2}}}\right]
\end{aligned}
$$

15. Answer (B)

Hint : $i=I_{0}\left(1-e^{\left.-\frac{t R}{L}\right)}\right.$

Solution :

$$
\begin{aligned}
& i=\frac{\varepsilon}{R}\left(1-e^{-\frac{t R}{L}}\right) \\
& \therefore \Delta q=\int d q=\int i d t=\frac{\varepsilon}{R} \int_{0}^{2 \tau}\left(1-e^{-\frac{t R}{L}}\right) d t \\
& \Rightarrow \Delta q=\frac{\varepsilon}{R}\left[t+\frac{L}{R} e^{-\frac{t R}{L}}\right]_{0}^{2 \tau} \\
& \Rightarrow \quad=\frac{\varepsilon}{R}\left[\frac{2 L}{R}+\frac{L}{R e^{2}}-0-\frac{L}{R}\right] \\
& \Rightarrow \Delta q=\frac{\varepsilon}{R}\left[\frac{L}{R}+\frac{L}{R e^{2}}\right] \\
& \Rightarrow \Delta q=\frac{\varepsilon L}{R^{2}}\left[\frac{e^{2}+1}{e^{2}}\right]
\end{aligned}
$$

16. Answer $A(Q, S) ; B(P, S) ; C(P, Q, R, S, T) ; D(P, Q$, $R, S, T)$

Hint : $\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\frac{\mu_{2}-\mu_{1}}{R}$ and magnification $m=\frac{\mu_{1} v}{\mu_{2} u}$.

Solution :

For option (A) :
 ray seems to diverge always after refraction so it will form virtual and diminished image.

ray would bend and meet the axis some what at shorter distance. So, it will form real and diminished image.

For option (C) :

bend towards normal so, depending upon the extent of bending the refracted ray may meet really or it may seems to be diverging. So it may form real image or virtual image also. Magnification may also vary on being diminished to magnified.

For option (D) :
 upon the extend of bending the refracted ray may meet really or it may seems to be diverging. So, it may form real or virtual image. Also magnification may vary from being diminished to being magnified.
17. Answer $A(Q, R, T) ; B(P, R) ; C(S, T) ; D(R, S, T)$

Hint : If field along the dipole, then torque is zero.

Solution :

For option (A) : Opposite current means they will repel and dipoles are at 180° torque is zero but rotationally unstable.
For option (B) : Decrement of current in one loop will induced the current in same sense in other loop, so attractive force and no torque.
For option (C) : Force/s are zero but torque is not zero.

For option (D) : Force/s are zero, torque is also zero but dipoles are oppositely aligned so rotationally unstable.
18. Answer (03)

Hint : $I=\frac{V}{Z}$ (Here Z is impedance)
Solution : In capacitive circuit $I_{C}=\frac{50 \sin \omega t}{2 R \angle-60^{\circ}}$

For refraction from $2^{\text {nd }}$ surface S_{2}

$$
\begin{aligned}
& \Rightarrow \quad I_{C}=\frac{25}{R} \sin \left(\omega t+60^{\circ}\right) \\
& \begin{aligned}
\therefore \quad V_{C} & =\frac{25}{R} \sin \left(\omega t+60^{\circ}\right) \times \sqrt{3} R \angle-90^{\circ} \\
& =25 \sqrt{3} \sin \left(\omega t-30^{\circ}\right)
\end{aligned} \\
& \therefore \quad \omega t-30^{\circ}=90^{\circ}
\end{aligned}
$$

Now in inductive circuit $I_{L}=\frac{50 \sin (\omega t)}{2 R \angle 30^{\circ}}$
$\therefore \quad v_{R_{1}}=3 \sqrt{R} \angle 0^{\circ} \frac{50 \sin (\omega t)}{2 R \angle 30^{\circ}}$

$$
=25 \sqrt{3} \sin \left(\omega t-30^{\circ}\right)
$$

$\therefore \quad v_{R_{1}}=25 \sqrt{3}$ volts
$\therefore \quad N=3$
19. Answer (08)

Hint : $E_{\text {lnd }}=\left|\frac{d \phi}{d t}\right|$
Solution : $E \cdot 2 \pi r=\pi r^{2} \cdot \frac{d B}{d t}$
$\Rightarrow \vec{E}=\frac{r}{2} \frac{d B}{d t}$
$r=6 \sin 53^{\circ}=6 \times \frac{4}{5}=\frac{24}{5}$

$\therefore \quad \int E d l=\frac{24}{5} \frac{1}{2} \times \frac{1}{3} \times 10$

$$
\left(\int E d l\right)=8
$$

20. Answer (01)

Hint : $\frac{\mu_{2}}{v}-\frac{\mu_{1}}{u}=\left(\frac{\mu_{2}-\mu_{1}}{R}\right)$ use this.
Solution : Let ' x ' be the distance of object from S_{1} so, for first refraction let v_{1} is the image distance then,

$$
\begin{aligned}
& \frac{3}{2 v_{1}}+\frac{4}{3 x}=\frac{-1}{6} \Rightarrow \frac{3}{2 v_{1}}=\frac{-1}{6}-\frac{4}{3 x} \\
& \Rightarrow v_{1}=\frac{-9 x}{8+x}
\end{aligned} \text { i.e. } \frac{9 x}{8+x} \text { from } S_{1} .
$$

Now for $2^{\text {nd }}$ refraction from S_{2} object distance would be $u_{2}=\frac{9 x}{8+x}+1=\frac{8+10 x}{8+x}$

$$
\begin{aligned}
& \frac{1}{v_{2}}-\frac{3}{2 u_{2}}=\frac{\left(1-\frac{3}{2}\right)}{-2} \\
& \Rightarrow v_{2}=-(x+1) \\
& \text { So, } \frac{-1}{x+1}+\frac{3(8+x)}{2(8+10 x)}=\frac{1}{4} \\
& \Rightarrow \frac{-16-20 x+24 x+24+3 x^{2}+3 x}{4(x+1)(4+5 x)}=\frac{1}{4} \\
& \Rightarrow 3 x^{2}+7 x+8=5 x^{2}+9 x+4 \\
& \Rightarrow 2 x^{2}+2 x-4=0 \\
& \Rightarrow x^{2}+x-2=0 \\
& \Rightarrow x=1,-2
\end{aligned}
$$

\therefore Object distance from $S_{1}=1 \mathrm{~m}$

PART - II (CHEMISTRY)

21. Answer (B, C)

Hint :

$$
\mathrm{FeSO}_{4}+2 \mathrm{NaOH} \longrightarrow \underset{\text { Dirty green ppt. }}{\mathrm{Fe}(\mathrm{OH})_{2}}+\mathrm{Na}_{2} \mathrm{SO}_{4}
$$

Solution

$$
\mathrm{CuSO}_{4}+2 \mathrm{NaOH} \longrightarrow \underset{\text { Bluish white ppt. }}{\mathrm{Cu}(\mathrm{OH})_{2}}+\mathrm{Na}_{2} \mathrm{SO}_{4}
$$

22. Answer (A, B, D)

Hint : Fact based and evident from diagram.
Solution : Copper (II) acetate is dimeric and hydrated as $\left[\mathrm{Cu}\left(\mathrm{OCOCH}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right]_{2}$.
23. Answer (A, B, D)

Hint :

(\pm) RS

(S)

(R)

Solution :

trans
24. Answer (C)

Hint : Fact based.
Solution : The following reactions take place in the reaction mixture
$\mathrm{MnCl}_{2}+2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{MnO}(\mathrm{OH})_{2}+2 \mathrm{NaCl}$ $+\mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{CrCl}_{3}+10 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Na}_{2} \mathrm{CrO}_{4}$

$$
+6 \mathrm{NaCl}+8 \mathrm{H}_{2} \mathrm{O}
$$

25. Answer (B, D)

Hint : The given complex ion has three geometrical isomers and each of them is optically inactive

(I)

(II)

(III)

Solution : The central metal ion (Cr^{3+}) has 3 unpaired electrons. So, magnetic moment of complex is 3.87 BM
26. Answer (B)

Hint : The solution (A) contains I^{-}ions, as seen from the following reaction

Solution: $\mathrm{Hgl}_{2}+2 \mathrm{KI} \longrightarrow \mathrm{K}_{2}\left[\mathrm{Hgl}_{\text {(c) }}\right]$
The hybridisation of $\mathrm{Hg}^{2+}\left(5 d^{10} 6 s^{0}\right)$ in (C) is $s p^{3}$. Therefore, shape of complex anion in (C) is tetrahedral.
27. Answer (C)

Hint : The reagent (X) must be $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3}$ which reacts with I- ions to give black ppt. of Bil_{3}
Solution :
$31^{-}+\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \longrightarrow \mathrm{Bil}_{3}+3 \mathrm{NO}_{3}^{-}$
28. Answer (D)

Hint : The black ppt. of Bil_{3} when heated in presence of water turns orange due to the formation of BiOl

Solution :

29. Answer (D)

Hint : CO is π^{*} acceptor and σ donor.
Solution : In metal carbonyl, the C-atom of CO ligand uses its filled orbital and metal uses its vacant orbital to form σ type of co-ordinate covalent bond. Simultaneously, the metal uses its filled orbital and CO uses its π-type of antibonding molecular orbital to form π-type of co-ordinate bond.

30. Answer (A)

Hint : CO form strong field ligand with metals.

Solution :

So, (II) and (IV) are inner orbital complexes and diamagnetic.
31. Answer (B)

Hint : Greater the electron density on metal, lesser will be the $\mathrm{C}-\mathrm{O}$ bond strength.

Solution :

In the given metal carbonyls i.e. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right],\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$ and $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$ the number of electron pairs available are 5,4 and 3 respectively. So, the share of $d \pi$ electrons from Ni, Fe and Mn for back donating to each CO molecule in these complexes will be $5 / 4$, $4 / 5$ and $3 / 6$. Hence, $\mathrm{C}-\mathrm{O}$ bond length in these complexes will be in the order of $(\mathrm{I})>$ (II) $>$ (III).
32. Answer (B)

Hint :

(R)

Solution :

(R)

The H -atom attached to $\beta \mathrm{C}$-atom with respect to Br -atom is more acidic in (Q) than in (P). Therefore, the transition state formed in elimination of HBr from (Q) is more stable than that from (P). So, (Q) reacts faster than (P) in the given elimination reaction.
33. Answer (C)

Hint : Hexachloridoplatinic acid is formed when platinum reacts with aqua regia

Solution : $3 \mathrm{Pt}+16 \mathrm{H}^{+}+4 \mathrm{NO}_{3}^{-}+18 \mathrm{Cl}^{-} \longrightarrow$

$$
3\left[\mathrm{PtCl}_{6}\right]^{2-}+4 \mathrm{NO}+8 \mathrm{H}_{2} \mathrm{O}
$$

34. Answer (A)

Hint : Fact based.

Solution :

35. Answer (B)

Hint : Co-ordination compound (X) must be cis isomer having permanent dipole moment since it dissolves in polar solvents.

Solution : Co-ordination compound (Y) must be trans isomer which is non-polar since it dissolves in non-polar solvents.
36. Answer $A(R, T)$; $B(P, S, T) ; C(P, Q, S) ; D(P, Q, S)$

Hint : CN^{-}is a strong field ligand and F^{-}is weak field ligand.

Solution :

$d^{2} s p^{3}$ hybridisation; Octahedral; Diamagnetic
[Note: As oxidation state of nickel ion increases, the splitting energy increases. Thus F^{-}ions cause pairing of unpaired electron]
(C) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$

$d^{2} s p^{3}$ hybridisation; Octahedral; Paramagnetic
(D) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

$d^{2} s p^{3}$ hybridisation; Octahedral; Paramagnetic
37. Answer $A(P, R, T) ; B(P, R) ; C(S, T) ; D(Q, R)$

Hint :

$\mathrm{CoCl}_{2}+7 \mathrm{KNO}_{2}+2 \mathrm{CH}_{3} \mathrm{COOH} \rightarrow \underset{\text { Yellow ppt. }}{\mathrm{K}_{3}} \underset{\substack{\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}}}{\mathrm{CO}}$

$$
+2 \mathrm{KCl}+2 \mathrm{CH}_{3} \mathrm{COOK}+\underset{\text { Neutral gas }}{\mathrm{NO}}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\mathrm{H}_{2} \mathrm{~S}+2 \mathrm{HNO}_{2} \rightarrow \mathrm{~S}+\underset{\text { Neutral gas }}{2 \mathrm{NO}}+2 \mathrm{H}_{2} \mathrm{O}
$$

Solution :

$$
\begin{gathered}
4 \mathrm{FeCl}_{3}+3 \mathrm{~K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \longrightarrow \mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}+12 \mathrm{KCl} \\
\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\underset{\substack{\text { Acidic } \\
\text { gas }}}{\mathrm{SO}_{2}}+\underset{\substack{\text { ellow } \\
\text { ppt. }}}{\mathrm{S}}+\mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

38. Answer (08)

Hint : The total number of substitution (by $\mathrm{S}_{\mathrm{N}} 1$) and elimination (by E_{1}) products formed in the given reaction are 8.

Solution :

$=\mathrm{CH}_{2}$

39. Answer (06)

Hint : Test for G-II cations.
Solution : Only $\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}, \mathrm{Bi}^{3+}, \mathrm{Sn}^{2+}, \mathrm{As}^{3+}$ and Cd^{2+} ions will get precipitated on passing $\mathrm{H}_{2} \mathrm{~S}$ gas in presence of dil HCl .
40. Answer (08)

Hint : The possible stereoisomers of the given complex ion are 8.

Solution :

(\pm

(土)

(土)

Meso-

Meso-II

PART - III (MATHEMATICS)

41. Answer (A, B, C)

Hint :
$\int \cos x d x=\sin x+c$ and $\int \sin x d x=-\cos x+c$

Solution :

$$
\begin{aligned}
& k^{2} \frac{\sin 3 x}{3}+\frac{k^{2}}{2} \sin x-\cos x-\left.2 k \sin x\right|_{0} ^{\pi / 2} \leq 1 \\
& \Rightarrow\left(-\frac{k^{2}}{3}+\frac{k^{2}}{2}-0-2 k\right)-(0+0-1-0) \leq 1 \\
& \Rightarrow+k^{2}-12 k+6 \leq 6 \\
& \Rightarrow \quad k(k-12) \leq 0 \\
& k \in[0,12] \\
& \text { 42. Answer (A, D) }
\end{aligned}
$$

Hint: $\int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+c$
Solution : $\int \frac{x^{4} d x}{1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}}$

$$
=4!x-4!\ln \left(1+\frac{x}{1!}+\frac{x^{2}}{2!}+\ldots+\frac{x^{4}}{4!}\right)+c
$$

$\Rightarrow k=4, f(1)=\frac{15}{24}$ and $f(0)=1$
43. Answer (A, B, D)

Hint : Form differential equation using the equation of tangent at (x, y) i.e.

$$
Y-y=\frac{d y}{d x}(X-x)
$$

Solution :

Equation of tangent at $P(x, y)$
$Y-y=\frac{d y}{d x}(X-x)$
$\beta=y-x \frac{d y}{d x}$
Hence $\quad \frac{x}{2}=\frac{y-x \frac{d y}{d x}+y}{2}$
$\Rightarrow \quad x=2 y-x \frac{d y}{d x}$
$\Rightarrow \frac{d y}{d x}-\frac{2 y}{x}=-1$
$\Rightarrow d\left(\frac{y}{x^{2}}\right)=-\frac{1}{x^{2}} d x$
$\Rightarrow \frac{y}{x^{2}}=\frac{1}{x}+c$
$\Rightarrow y=x-x^{2}$
44. Answer (B, C)

Hint :
Minimize $\int_{x_{1}}^{x_{2}}\left(\left(x^{2}+2 x-3\right)-(k x+1)\right) d x$ where x_{1} and x_{2} are intersection points of given curves.

$$
\text { Solution : } k x+1=x^{2}+2 x-3
$$

$\Rightarrow x^{2}+(2-k) x-4=0$

$$
\begin{align*}
\Rightarrow \quad x & =\frac{k-2 \pm \sqrt{(k-2)^{2}-4(-4)}}{2} \\
& =\frac{k-2 \pm \sqrt{k^{2}-4 k+20}}{2}<\operatorname{cis}_{K_{2}}^{x} \tag{i}
\end{align*}
$$

$$
\begin{align*}
A & =\left|\int_{x_{1}}^{x_{2}}\left(\left(x^{2}+2 x-3\right)-(k x+1)\right) d x\right| \\
& =\left|\frac{x^{3}}{3}+\frac{(2-k) x^{2}}{2}-4 x\right|_{x_{1}}^{x_{2}} \\
& =\left|\frac{x_{2}^{3}-x_{1}^{3}}{3}+\left(\frac{2-k}{2}\right)\left(x_{2}^{2}-x_{1}^{2}\right)-4\left(x_{2}-x_{1}\right)\right| \tag{ii}
\end{align*}
$$

From (i) $x_{1}+x_{2}=k-2, x_{1} x_{2}=-4$ and $\left|x_{1}-x_{2}\right|$ $=\sqrt{k^{2}-4 k+20}$ and using these results in (ii) we get

$$
\begin{aligned}
& =\left\lvert\, \frac{\left(x_{2}-x_{1}\right)\left(\left(x_{1}+x_{2}\right)^{2}-x_{1} x_{2}\right)}{3}+\left(\frac{2-k}{2}\right)\right. \\
& =\left|\sqrt{k^{2}-4 k+20}\left(\frac{\left(x_{2}-x_{1}\right)\left(x_{1}+x_{2}\right)-4\left(x_{2}-x_{1}\right) \mid}{3}+\left(\frac{2-k}{2}\right)(k-2)-4\right)\right| \\
& =\left|\sqrt{k^{2}-4 k+20}\left(\frac{2(k-2)^{2}+8-3(k-2)^{2}-24}{6}\right)\right| \\
& =\left|\sqrt{k^{2}-4 k+20}\left(\frac{-(k-2)^{2}}{6}-\frac{8}{3}\right)\right|
\end{aligned}
$$

$\Rightarrow A_{\min }$ at $k=2$
and $\quad A_{\min }=\left|\sqrt{16}\left(\frac{-8}{3}\right)\right|=\frac{32}{3}$ sq. units
45. Answer (A, D)

Hint: Use property $\int_{a}^{b} f(a+b-x) d x=\int_{a}^{b} f(x) d x$
Solution : $I=\int_{0}^{\pi / 2} t(\sin 2 x) \sin x d x$
$I=\int_{0}^{\pi / 2} f(\sin (\pi-2 x)) \cos x d x$
$I=\int_{0}^{\pi / 2} t(\sin 2 x) \cos x d x$
Add (i) and (ii) we get

$$
\begin{aligned}
2 I & =\int_{0}^{\pi / 2} f(\sin 2 x)(\sin x+\cos x) d x \\
& =\sqrt{2} \int_{0}^{\pi / 2} f(\sin 2 x) \sin \left(x+\frac{\pi}{4}\right) d x
\end{aligned}
$$

Put $x=\frac{\pi}{4}-\theta$
$\Rightarrow d x=-d \theta$

$$
=\sqrt{2} \int_{+\pi / 4}^{-\pi / 4} f\left(\sin \left(2\left(\frac{\pi}{4}-\theta\right)\right)\right) \cos \theta(-d \theta)
$$

$$
=\sqrt{2} \int_{\pi / 4}^{-\pi / 4} f(\cos 2 \theta) \cos \theta(-d \theta)
$$

$$
=2 \sqrt{2} \int_{0}^{\pi / 4} f(\cos 2 \theta) \cos \theta d \theta
$$

$I=\sqrt{2} \int_{0}^{\pi / 4} f(\cos 2 \theta) \cos \theta d \theta$
46. Answer (B)
47. Answer (B)
48. Answer (C)

Hint for Q. Nos. 46 to 48

$$
\frac{d}{d x} \int_{f(x)}^{g(x)} h(x)=h(g(x)) \cdot g^{\prime}(x)-h(f(x)) \cdot f^{\prime}(x)
$$

Solution for Q. Nos. 46 to 48
Using Leibnitz's rule
$f(x)=x^{2}-x^{2} f(x)$
$\Rightarrow f(x)=\frac{x^{2}}{1+x^{2}}(f(x)$ is even function)
$g(x)=f(x)-1 \Rightarrow g(x)=\frac{x^{2}-1-x^{2}}{1+x^{2}}=-\frac{1}{1+x^{2}}$
Range of $g(x) \in[-1,0)$

$$
\begin{aligned}
I & =\int_{0}^{2}\left[-\frac{1}{g(x)}\right]^{d x}=\int_{0}^{2} 1+\left[x^{2}\right] d x \\
& =\left.x\right|_{0} ^{2}+\int_{0}^{1} 0 d x+\int_{1}^{\sqrt{2}} d x+\int_{\sqrt{2}}^{\sqrt{3}} 2 d x+\int_{\sqrt{3}}^{2} 3 d x \\
& =2+0+(\sqrt{2}-1)+2(\sqrt{3}-\sqrt{2})+3(2-\sqrt{3}) \\
& =7-\sqrt{2}-\sqrt{3} \\
\Rightarrow & {[I]=3 }
\end{aligned}
$$

49. Answer (A)
50. Answer (D)
51. Answer (D)

Hint for Q. Nos. 49 to 51
$\frac{d D}{d t} \propto D \Rightarrow \frac{d D}{d t}=k D$ (where k is constant of proportionality)
Solution for Q. Nos. 49 to 51 :
Let data at any time ' t ' is D

$$
\begin{aligned}
& \frac{d D}{d t} \propto D \\
& \Rightarrow \frac{d D}{d t}=k D \\
& \Rightarrow \quad \int_{500}^{D} \frac{d D}{D}=\int_{0}^{t} k d t \\
& \left.\Rightarrow \ln D\right|_{500} ^{D}=k t \\
& \Rightarrow \frac{D}{500}=e^{k t} \\
& \Rightarrow D=500 e^{k t}
\end{aligned}
$$

At $t=2, D=0.9 \times 500$
$\therefore 0.9 \times 500=500 e^{k 2}$
$\Rightarrow 0.9=e^{2 k}$
$\Rightarrow 2 k=\ln 0.9$
$\Rightarrow k=\frac{\ln (0.9)}{2}$
$\Rightarrow \quad D=500 e^{\left(\frac{1}{2}\right)(\ln (0.9)) t}$
At $t=4 \mathrm{~h}$, if $D=\frac{500}{2}$ in (i)

$$
D=500 e^{2 \ln (0.9)}
$$

$\Rightarrow \quad \frac{1}{2}=e^{\frac{1}{2} \ln (0.9) t}$
$\Rightarrow \quad-\ln 2=\frac{1}{2} \ln (0.9) t$
$\Rightarrow t=\frac{2 \ln \left(\frac{1}{2}\right)}{\ln (0.9)}$
52. Answer (C)

Hint :
$f(x) g^{\prime}(y) d y+f^{\prime}(x) g(y) d x=\int d(f(x) g(y))$
Solution : $x d y+\cos y \ln x d y=6 x^{2} d x-\sin y d x$
$\Rightarrow d y+\cos y \ln x d y=6 x d x-\frac{\sin y}{x} d x$
$\Rightarrow \quad d y+\cos y \ln x d y+\frac{\sin y d x}{x}=6 x d x$
$\Rightarrow \int d y+\int d(\sin y \ln x)=6 \int x d x$
$\Rightarrow \quad y+\sin y \ln x=3 x^{2}+c$
For $y(1)=3 \Rightarrow 3+0=3+c \Rightarrow c=0$
$\Rightarrow y+\sin y \ln x=3 x^{2}$
Put $x=e$ we get
$y+\sin y=3 e^{2}$
53. Answer (C)

Hint : Area $=\int_{\alpha}^{\beta}(f(x)-g(x)) d x$, where α and β are intersection points of given curves
Solution :

$$
\begin{aligned}
A_{1} & =\int_{0}^{2} 8-\left(2 x-x^{2}\right) d x+\int_{2}^{4} 8-\left(x^{2}-2 x\right) d x \\
& =8 x-x^{2}+\left.\frac{x^{3}}{3}\right|_{0} ^{2}+8 x-\frac{x^{3}}{3}+\left.x^{2}\right|_{2} ^{4} \\
& =\left(16-4+\frac{8}{3}\right)+\left(32-\frac{64}{3}+16-16+\frac{8}{3}-4\right) \\
= & \frac{44}{3}+\left(28-\frac{56}{3}\right)=\frac{44}{3}+\frac{28}{3}=\frac{72}{3}=24 \text { sq.units } \\
A_{2} & =\int_{-2}^{0} 8-\left(x^{2}-2 x\right) d x=8 x-\frac{x^{3}}{3}+\left.x^{2}\right|_{-2} ^{0} \\
& =0-\left(-16+\frac{8}{3}+4\right)=12-\frac{8}{3}=\frac{28}{3} \text { sq. units } \\
k & =\frac{24}{28} \cdot 3 \Rightarrow \quad[k]=2
\end{aligned}
$$

54. Answer (C)

Hint : $\lim _{n \rightarrow \infty} \sum_{r=1}^{k n} f\left(\frac{r}{n}\right) \cdot \frac{1}{n}=\int_{0}^{k} f(x) d x$
Solution : Let $L=\lim _{n \rightarrow \infty} \sum_{r=1}^{4 n} \frac{1}{r+\sqrt{r n}}$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \sum_{r=1}^{4 n} \frac{1}{n}\left(\frac{1}{\left(\frac{r}{n}\right)+\sqrt{\frac{r}{n}}}\right) \\
& =\int_{0}^{4} \frac{d x}{(x+\sqrt{x})}
\end{aligned}
$$

Put $x=t^{2}$
$\Rightarrow d x=2 t d t$
$\Rightarrow L=\int_{0}^{2} \frac{2 t d t}{t(1+t)}=\left.2 \ln (1+t)\right|_{0} ^{2}=2 \ln 3=\ln 9$
55. Answer (B)

Hint : Put $\sin 2 x=2 \sin x \cos x$ and make partial fractions
Solution : $\int \frac{2 \sin x(1-\cos x) d x}{2 \sin x \cos x(1+\cos x)}$
$\Rightarrow \int \frac{1-\cos x d x}{(1+\cos x) \cos x}$
$\Rightarrow \int\left(\frac{1}{\cos x}-\frac{2}{1+\cos x}\right) d x$
$\Rightarrow \int \sec x d x-2 \int \frac{d x}{2 \cos ^{2} \frac{x}{2}}$
$\Rightarrow \quad \int \sec x d x-\int \sec ^{2} \frac{x}{2} d x$
$\Rightarrow \ln |\sec x+\tan x|-2 \tan \frac{x}{2}+c$
56. Answer A(Q, R, S, T); B(Q, R, S, T); C(T);
$D(P, Q, R, S)$
Hint : Area between two curve $f(x)$ and $g(x)$
$=\int_{\alpha}^{\beta}(f(x)-g(x)) d x$, where α, β are the point of intersection.

Solution :

(A) $y=|x| x$

$A=\int_{-1}^{0}-x^{2} d x+\int_{0}^{1} x^{2} d x=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}$ sq. units
(B)

$$
\begin{aligned}
& A=\int_{\pi / 4}^{5 \pi / 4}(\sin x-\cos x) d x=\left.(-\cos x-\sin x)\right|_{\pi / 4} ^{5 \pi / 4} \\
&=\left(+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)-\left(-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right) \\
&=2 \sqrt{2} \text { sq. units }
\end{aligned}
$$

(C) $[|x|][|y|]=2$

$A=8$ sq. units
(D)

Required Area $=4 A=4$ (Area of semicircle of $C_{1}-\left(\right.$ Area of quarter circle of $\left.C_{2}\right)+$ Area of $\triangle A O B$)

$$
\begin{aligned}
& =4\left(\frac{\pi(\sqrt{2})^{2}}{2}-\frac{\pi(2)^{2}}{4}+\frac{1}{2} \cdot 2 \cdot 2\right) \\
& =4(\pi-\pi+2)=8 \text { sq. units }
\end{aligned}
$$

57. Answer $A(P, Q, R) ; B(P, Q, R) ; C(S, T) ; D(P, Q, R, S, T)$

Hint : Apply estimation of integrals
Solution : $I_{1}=\int_{0}^{1} e^{x^{2}} d x \Rightarrow 1<I<e-1$
$I_{2}=\int_{0}^{\pi / 2} \frac{\sin x}{x} d x \Rightarrow \frac{2}{\pi}<I<\frac{\pi}{2}$
$I_{3}=\left|\int_{0}^{\pi / 2}(\sin x) d x\right|=\frac{\pi}{2} \ln 2$
$=\frac{\pi}{2} \times(2.303) \times(0.301) \cong 0.9$
$I_{4}=0<\int_{0}^{1} \frac{x^{7}}{\left(1+x^{8}\right)^{1 / 7}} d x<x^{7}$
$\Rightarrow \quad 0<I_{4}<\frac{1}{8}$
58. Answer (00)

Hint : Differentiate expression of area using Leibnitz's rule

Solution : Given

$$
\alpha^{3}+8=\int_{2}^{\alpha}\left(x^{2}+2-f(x)\right) d x
$$

Differentiate both sides we get
$3 \alpha^{2}=\alpha^{2}+2-f(\alpha)$
$\Rightarrow f(\alpha)=-2 \alpha^{2}+2$
$\Rightarrow f(x)=-2 x^{2}+2$
$\Rightarrow \quad x_{0}=0$
59. Answer (07)

Hint : Put $y=v x$ and solve as homogeneous differential equation.

Solution : Put $y=v x$
$u+x \frac{d u}{x}=\frac{v}{1+v^{2}}$
$\Rightarrow \quad x \frac{d u}{d x}=\frac{v-v-v^{3}}{1+v^{2}}$
$\Rightarrow \int \frac{(1+v)^{2}}{v^{3}} d v=-\int \frac{d x}{x}$
$\Rightarrow \quad-\frac{1}{2 v^{2}}+\ln u=-\ln x+c$
$\Rightarrow-\frac{x^{2}}{2 y^{2}}+\ln \left(\frac{y}{x}\right)+\ln x=c \Rightarrow-\frac{1}{2}$
And $\frac{-a^{2}}{2 e^{2}}+1=-\frac{1}{2} \Rightarrow \frac{a^{2}}{3}=e^{2}$
60. Answer (02)

Hint: If $f(x)=t$
$\Rightarrow f^{\prime}(x) d x=d t$
Solution : $\int \frac{e^{2 x}}{\left(e^{2 x}+1\right)^{2}} d x$
Put $e^{2 x}+1=t$
2. $e^{2 x} d x=d t$
$\Rightarrow \frac{1}{2} \int \frac{d t}{t^{2}}=-\frac{1}{2} \frac{1}{t}+c=-\frac{1}{2\left(e^{2 x}+1\right)}+c \Rightarrow k=2$

