All India Aakash Test Series for JEE (Main)-2021

TEST -1 - Code-C

Test Date: 06/10/2019

ANSWERS									
PHYSICS C		CHEM	HEMISTRY M.		ATHEMATICS				
1.	(4)	26.	(3)	51.	(1)				
2.	(1)	27.	(4)	52.	(3)				
3.	(1)	28.	(2)	53.	(1)				
4.	(4)	29.	(3)	54.	(4)				
5.	(1)	30.	(1)	55.	(1)				
6.	(2)	31.	(2)	56.	(4)				
7.	(3)	32.	(3)	57.	(3)				
8.	(3)	33.	(4)	58.	(4)				
9.	(2)	34.	(3)	59.	(2)				
10.	(2)	35.	(4)	60.	(2)				
11.	(3)	36.	(4)	61.	(4)				
12.	(4)	37.	(1)	62.	(1)				
13.	(4)	38.	(3)	63.	(2)				
14.	(3)	39.	(3)	64.	(3)				
15.	(2)	40.	(3)	65.	(2)				
16.	(1)	41.	(4)	66.	(4)				
17.	(1)	42.	(1)	67.	(2)				
18.	(2)	43.	(4)	68.	(3)				
19.	(4)	44.	(4)	69.	(2)				
20.	(3)	45.	(3)	70.	(4)				
21.	(50)	46.	(36)	71.	(04)				
22.	(21)	47.	(50)	72.	(46)				
23.	(46)	48.	(10)	73.	(04)				
24.	(55)	49.	(32)	74.	(10)				
25.	(16)	50.	(28)	75.	(04)				

HINTS & SOLUTIONS

PART - A (PHYSICS)

1. Answer (4)

$$Hint: 1N = \frac{1 \text{kg m}}{s^2}$$

Sol.:
$$\frac{1}{\alpha} \cdot \frac{1}{\beta} (\gamma)^2 = \frac{\gamma^2}{\alpha \beta}$$

2. Answer (1)

Hint:
$$a = 12 - 3t = \frac{dv}{dt}$$

Sol.:
$$\int_{7}^{v} dv = \int_{1}^{5} (12 - 3t) dt$$
$$\Rightarrow v - 7 = \left(12t - \frac{3t^2}{2}\right)\Big|_{1}^{5} = 12$$
$$\Rightarrow v = 19 \text{ m/s}$$

3. Answer (1)

Hint:
$$[a] = [LT^{-2}]$$

Sol.:
$$(c) = [a]^{1/2} = [L^{1/2}T^{-1}]$$

$$[b] = \frac{[L][a]}{T^3} = [L^2 T^{-5}]$$

4. Answer (4)

Hint:
$$[\tau] = [\rho^x f^y v^z] = ML^2T^{-2}$$

Sol.:
$$\Rightarrow (ML^{-3})^{x} (T^{-1})^{y} (LT^{-1})^{z} = ML^{2}T^{-2}$$

 $\Rightarrow x = 1, -3x + z = 2 \Rightarrow z = 2 + 3 = 5$
 $-y - z = -2 \Rightarrow y = 2 - 5 = -3$
 $\Rightarrow [\tau] = of^{-3} v^{5}$

5. Answer (1)

Hint:
$$A = 16.6 \times 4.7 = 78.02 \text{ cm}^2$$

Sol.: There will be only two significant figures as 4.7 cm has only two significant figures.

6. Answer (2)

Hint:
$$R_P = \frac{R_1 R_2}{R_1 + R_2} = \frac{3 \times 6}{9} = 2 \Omega$$

$$R_P = 2.0 \Omega$$

Sol.:
$$\frac{\Delta R_p}{2^2} = \frac{0.1}{9} + \frac{0.2}{36} = \frac{0.4 + 0.2}{36}$$

$$\Delta R_P = \frac{0.6}{9} = 0.067 = 0.1 \Omega$$

7. Answer (3)

Hint: Mean value

$$=\frac{1.49+1.50+1.52+1.54+1.48}{5}$$

$$=\frac{7.53}{5}=1.506=1.51$$
 cm

Sol.: Mean absolute error

$$= \frac{0.02 + 0.01 + 0.01 + 0.03 + 0.03}{5}$$
$$= \frac{0.1}{5} = 0.02$$

% error =
$$\frac{0.02}{1.51} \times 100 = 1.3\%$$

8. Answer (3)

Hint:
$$\int_{u}^{u/2} v^{-1/2} dv = \int_{0}^{t} -k dt \implies 2v^{1/2} \Big|_{u}^{\frac{u}{2}} = -kt$$
$$\implies 2 \left[\sqrt{u} - \sqrt{\frac{u}{2}} \right] = kt$$

Sol.:
$$t = \frac{2\sqrt{u}}{k} \left[1 - \frac{1}{\sqrt{2}} \right] = \frac{\sqrt{u}}{k} [2 - \sqrt{2}]$$

9. Answer (2)

Hint:
$$0 = u - gt_1 \Rightarrow t_1 = \frac{u}{g}$$

Sol.:
$$0 = H + ut - \frac{1}{2}gt^{2}$$

$$\Rightarrow \frac{1}{2}gt^{2} - ut - H = 0$$

$$t = \frac{u + \sqrt{u^{2} + 4Hg/2}}{g} = \frac{u + \sqrt{u^{2} + 2Hg}}{g}$$

$$\frac{u + \sqrt{u^{2} + 2Hg}}{g} = 3 \cdot \frac{u}{g}$$

$$\Rightarrow u^{2} + 2Hg = 4u^{2}$$

$$\Rightarrow 2Hg = 3u^{2} \Rightarrow H = \frac{3u^{2}}{2g}$$

10. Answer (2)

$$Hint: H = ut - \frac{1}{2}gt^2$$

Sol.:
$$\Rightarrow \frac{1}{2}gt^2 - ut + H = 0$$

$$t = \frac{u \pm \sqrt{u^2 - 2gH}}{g}$$

$$\Rightarrow t_1 + t_2 = \frac{2u}{g}$$

$$\Rightarrow u = \frac{g(t_1 + t_2)}{2}$$

$$0 = u^2 - 2gh_{\text{max}}$$

$$\Rightarrow h_{\text{max}} = \frac{u^2}{2g} = \frac{g(t_1 + t_2)^2}{8}$$

Hint:
$$x_Q - x_P = Vt - \frac{1}{2}at^2$$

Sol.: Graph is a downward parabola which initially goes up and then down.

12. Answer (4)

Hint: $\Delta V = \text{Area under } v - t \text{ graph}$

Sol.:
$$\Delta V = \frac{1}{2} \times 4 \times 5 - \frac{1}{2} 2 \times \frac{5}{2}$$

= 10 - 2.5 = 7.5 m/s
 $V = V_i + \Delta V = 17.5$ m/s

13. Answer (4)

Hint: Total time of journey
=
$$2 \times 90 = 180$$
 minutes
= 3 hr

Sol.: Speed of river =
$$\frac{12}{3}$$
 = 4 km/h

14. Answer (3)

Hint:
$$V^2 = 9x$$

Sol.:
$$2V \frac{dV}{dt} = 9V \implies a = \frac{9}{2}$$

 $S = \frac{1}{2} \frac{9}{2} \cdot t^2 \implies 16 = 9t^2$
 $\implies t = \frac{4}{3} s$
 $V_{av} = \frac{4 \times 3}{4} = 3 \text{ m/s}$

15. Answer (2)

Hint:
$$\int \frac{dx}{ax+b} = \frac{1}{a} \ln(ax+b) + c$$

Sol.:
$$I = \frac{3}{3}\ln(3x+4)\Big|_0^2 = \ln\frac{10}{4} = \ln\frac{5}{2}$$

16. Answer (1)

Hint: Particle is instantaneously at rest at t = 5 s

Sol.:
$$d_1 = \left(10 \times 5 - \frac{1}{2} 2 \times 5^2\right) - \left(10 \times 4 - \frac{1}{2} 2 \times 4^2\right)$$

 $= (50 - 25) - (40 - 16) = 1 \text{ m}$
 $d_2 = \frac{1}{2} 2 \times 2^2 = 4 \text{ m}$
 $\Rightarrow \text{ Average speed} = \frac{5}{3} \text{ m/s}$

17. Answer (1)

Hint: For critical point y' = 0x = -3 is point of maxima

Sol.:
$$\frac{dy}{dx} = 6x^2 + 6x - 36 = 0$$

$$\Rightarrow x^2 + x - 6 = 0$$

$$x = -3 \text{ or } x = 2$$

$$\frac{d^2y}{dx^2} = 2x + 1$$

$$\Rightarrow y \text{ has a maximum at } x = -3$$

$$\Rightarrow y_{\text{max}} = -54 + 27 + 108 + 7 = 88$$

18. Answer (2)

Hint:
$$x_P = ut$$

Sol.:
$$x_Q = d + \frac{1}{2}at^2$$

 $0 = \frac{1}{2}a \cdot 2t - u \implies t = \frac{u}{a}$
 $(x_Q - x_P)_{min} = d + \frac{1}{2}a \cdot \frac{u^2}{a^2} - \frac{u^2}{a}$
 $= d - \frac{u^2}{2a}$

19. Answer (4)

Hint:
$$125 = 5t^2 \Rightarrow t = 5 \text{ s}$$

Sol.: $S_{5th} = 0 + \frac{1}{2} 10[9] = 45 \text{ m}$
 $S_{1st} = 5 \text{ m}$

20. Answer (3)

Hint: Apply
$$s = ut + \frac{1}{2}at^2$$

Sol.: $\frac{1}{2}2 \times 3^2 + \left[6(t-3) - \frac{1}{2}2 \times (t-3)^2\right] = 0$
 $\Rightarrow 18 + 12t - 36 - 2(\ell - 6t + 9) = 0$
 $\Rightarrow 6t - 9 - \ell + 6t - 9 = 0$

$$t^{2} - 12t - 18 = 0$$

$$t = \frac{12 \pm \sqrt{144 - 72}}{2}$$

$$= \frac{12 \pm 6\sqrt{2}}{2} = (6 + 3\sqrt{2})s$$

21. Answer (50)

Hint:
$$v = -\frac{5}{2}x + 5$$

Sol.: $a = \frac{dv}{dt} = -\frac{5}{2}v = \frac{-5}{2}\left(\frac{-5}{2}x + 5\right)$
 $= \frac{25x}{4} - \frac{25}{2}$
 $a(x = 1 \text{ m}) = \frac{-25}{4} \text{ m/s}^2$

22. Answer (21)

Hint:
$$\frac{dv}{dt} = (2t+4) \implies \int_{0}^{v} dv = \int_{0}^{3} (2t+4) dt$$

Sol.:
$$V = \left(\frac{2t^2}{2} + 4t\right)\Big|_0^3 = 9 + 12 = 21 \text{ m/s}$$

23. Answer (46)

Hint:
$$x_{5 \text{ s}} = \frac{1}{2} 2 \times 5^2 = 25 \text{ m}, V_{5 \text{ s}} = 10 \text{ m/s}$$

Sol.:
$$x_{8 \text{ s}} = 25 + 10 \times 3 - \frac{1}{2} 2 \times 3^2 = 46 \text{ m}$$

24. Answer (55)

Hint:
$$S_{nth} = u + \frac{1}{2}a(2n-1)$$

Sol.:
$$S_{4th} = u - 5$$
 (7) = $u - 35$
 $S_{5th} = u - 5 \times 9 = u - 45$
 $u - 35 = 2(u - 45)$
 $\Rightarrow u = 90 - 35 = 55 \text{ m/s}$

25. Answer (16)

Hint:
$$A = \int_{0}^{x_2} y dx$$

Sol.:
$$A = 24 - \int_{0}^{2} 3x^{2} dx = 24 - 8 = 16$$

PART - B (CHEMISTRY)

26. Answer (3)

Hint: If a charged particle having charge qC is accelerated through a P.D. of V volts, its K.E. increase by qV J.

Sol.: de Broglie wavelength is given as:

$$\lambda = \frac{h}{\sqrt{2m(K.E.)}}$$

$$\therefore \frac{\lambda_{\alpha}}{\lambda_{p}} = \sqrt{\frac{2m_{p} \cdot q_{p} \cdot 2V}{2m_{\alpha} \cdot q_{\alpha}V}} [m_{\alpha} = 4m_{p} \text{ and } q_{\alpha} = 2q_{p}]$$

$$= \sqrt{\frac{2 \times 2}{2 \times 4 \times 2}} = \frac{1}{2}$$

27. Answer (4)

Hint: In case of unielectronic species, energy of orbitals depends on n.

Sol.: For unielectronic species, higher the value of n, higher will be the energy level of orbital.

∴ Order of energy is : I < II = III < IV

28. Answer (2)

Hint: Transition takes from 4th excited state i.e., 5th energy level.

Sol.: Total number of different photons emitted = 10

Out of 10 different photons, 4 belong to ultraviolet region.

3 each to the visible and infrared region.

Minimum wavelength photon or maximum energy photon belongs to ultraviolet region ($5 \rightarrow 1$ transition)

29. Answer (3)

Hint: Iso-electronic species have same number of electrons

Sol.: He⁺ and Li⁺⁺ have one electron each while H⁺ has zero electron.

30. Answer (1)

Hint: For photoelectric effect to occur, the energy of incident photon should be more than work function of metal.

Sol.: Energy of incident photon

$$= \frac{hc}{\lambda}$$

$$\approx \frac{1240}{310} \text{ eV} = 4 \text{ eV}$$

:. Photoelectric effect is possible for metal A only.

Hint: According to Bohr's model,

Angular momentum of an electron ∞ orbit number.

Sol.:
$$A \cdot M = mvr = \frac{nh}{2\pi}$$

$$\therefore \frac{(A \cdot M)_{4, He^{x}}}{(A \cdot M)_{3, Pe^{3+}}} = \frac{4}{2} = 2$$

32. Answer (3)

Hint: The removed electron belongs to outermost orbital i.e., 4s

Sol.: Possible quantum numbers for 3d orbital electron is $\left(3, 2, 0, \frac{1}{2}\right)$

Possible quantum numbers for 4s orbital electron is $\left(4, 0, 0, \frac{1}{2}\right)$

33. Answer (4)

Hint: Cathode rays particles are electrons while anode rays particles are positively charged ions.

Sol.: Anode rays particles can carry a integral multiple of the fundamental unit of electric charge.

34. Answer (3)

Hint: Radial nodes of an orbital has spherical shape.

Sol.: Number of radial nodes of an orbital $= n - \ell - 1$

35. Answer (4)

Hint: Successive ionisation energy of any element always increases.

Sol.: The largest jump in I.E. is from I.E. $_2$ to I.E. $_3$

.. Most probable outermost electronic configuration is ns².

36. Answer (4)

Hint: s-block and p-block elements are called representative elements.

Sol.: Outer electronic configuration of f-block elements is (n-2)f¹⁻¹⁴(n-1)d⁰⁻¹ns²

Metallic character and reactivity increase down the group among s-block elements, and due to high reactivity they are never found in pure form in nature.

37. Answer (1)

Hint& Sol.:

The given graph is for atomic radius (regular increase)

38. Answer (3)

Hint: Mg²⁺ and Al³⁺ have same number of electrons.

Sol.: Size of given species follows the order $Mg > Al > Mg^{2+} > Al^{3+}$

39. Answer (3)

Hint: For any element : IE₁< IE₂ (always)

Sol.: In periodic table He has highest ionisation energy.

Due to half filled electronic configuration IE of ns²np³ is more than that of ns²np² and ns²np⁴ outer electronic configuration.

40. Answer (3)

Hint: Due to ns² configuration of Mg, addition of electron will lead to absorption of energy.

Sol.: Addition of electron to Na, Al and F leads to release of energy.

41. Answer (4)

Hint: Correct order of ionisation energy:

Sol.: Screening effect follows the order: s > p > d > f

Atomic radius : B < Ga < Al < In < TI Ionic size : Mg^{2+} < Na^+ < F^- < O^{2-}

42. Answer (1)

Hint: Reactant B will act as limiting reagent.

Sol.:
$$2A + 3B \rightarrow C$$
 Initial moles $6 \quad 8$ (L.R)

$$\therefore$$
 Moles of C formed $=\frac{8}{3}=2.67$ moles

43. Answer (4)

Hint: Moles of KIO₃ =
$$\frac{64.2}{214}$$
 = 0.3 moles

Moles of KI = $\frac{83}{166}$ = 0.5 moles

Moles of HCI = $\frac{43.8}{36.5}$ = 1.2 moles

Sol.: HCl will act as limiting reagent.

$$\therefore$$
 Moles of ICI formed = $\frac{1.2}{2}$ = 0.6 moles

Moles of KCI formed =
$$\frac{1.2}{2}$$
 = 0.6 moles

Moles of
$$H_2O$$
 formed $=\frac{1.2}{2} = 0.6$ moles

Total moles of products formed = 1.8 moles

44. Answer (4)

Hint: 2 moles of KMnO₄ reacts with 5 moles of H_2O .

$$= 50 \times 0.12$$

Moles of H₂O₂ reacted

$$= 6 \times 2.5$$

$$=\frac{15}{20}=0.75$$

$$= 0.75 \text{ mol/L}$$

$$\therefore$$
 % W/V = $\frac{0.75 \times 34}{10}$

$$= 2.55 \text{ g/mL}$$

45. Answer (3)

Hint: M. moles of
$$H^+ = 40 \times 0.2 + 60 \times 0.1 \times 2$$

M. moles of $OH^- = 150 \times 0.1 = 15 \text{ m}$ moles

Sol.: Volume of final solution = 250 mL

$$\therefore [H^+] = \frac{5}{250} = 0.02 \text{ M}$$

46. Answer (36)

Hint: At STP 1 mole of any gas occupy 22.4 L.

Sol.: Volume of
$$H_2(g)$$
 produced = $\frac{3.136}{22.4}$

$$= 0.14$$

Assume mass of AI in 3 g sample = x

$$\therefore \frac{3}{2} \cdot \frac{x}{27} + \frac{3-x}{24} = 0.14$$

$$\Rightarrow \frac{3x}{54} + \frac{3-x}{24} = 0.14$$

$$\Rightarrow$$
 72x + 162 - 54x = 0.14 × 54 × 24

$$\Rightarrow$$
 x = 1.08 g

.. % of AI in alloy =
$$\frac{1.08}{3} \times 100 = 36\%$$

47. Answer (50)

Hint: Moles of Fe³⁺ reacted = 2 \times moles of NH₂OH (from 1st reaction)

Sol.: From reaction 1st

Moles of NH₂OH = $\frac{1}{2}$ × moles of Fe³⁺ reacted in 50 mL solution

$$= 5 \times 10^{-3}$$
 moles

... Moles of NH₂OH in 10 ml original sample = 5×10^{-3} moles

$$\therefore \text{ Molarity } = \frac{5 \times 10^{-3}}{10 \times 10^{-3}} = 0.5 \text{ M}$$

48. Answer (10)

Hint: During formation of cation, electrons are removed from outermost orbits first.

Sol.: Ground state electronic configuration of Fe³⁺ is

$$1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^5$$

 $n+1 = 1 \ 2 \ 3 \ 3 \ 4 \ 5$

$$\therefore$$
 Number of electrons having $s = -\frac{1}{2}$

$$= 1 + 3 + 1 + 5$$

 $= 10$

49. Answer (32)

Hint: % of C = 37.5

$$%$$
 of H = 12.5

% of
$$O = 50$$

Sol.: C H O
% 37.5 12.5 50
moles
$$\frac{37.5}{12} = 3.125$$
 $\frac{12.5}{1} = 12.5$ $\frac{50}{16} = 3.125$
ratio $\frac{3.125}{3.125} = 1$ $\frac{12.5}{3.125} = 4$ $\frac{3.125}{3.125} = 1$

∴ Empirical formula = CH₄O

Empirical formula mass = 32

Hint: Avg. mol. mass of air = $0.2 \times 32 + 0.8 \times 28$ = 28.8 g/mol

.. Moles of
$$N_2 = \frac{14.4}{28.8} \times 0.8$$

= 0.4 mol

Sol.: For given reaction N₂ will be the limiting reagent.

$$\therefore$$
 Amount of Li₃N formed = 35 × 0.8
= 28 g

PART - C (MATHEMATICS)

51. Answer (1)

$$Hint: \quad \frac{3^x - 2^x}{x} \ge 0$$

Sol.:
$$f(x) = \sqrt{\frac{3^x - 2^x}{x}}$$

 $\frac{3^x - 2^x}{x} \ge 0$

If
$$x > 0$$
 then $3^x - 2^x \ge 0 \Rightarrow x \in (0, \infty)$

If
$$x < 0$$
 then $3^x - 2^x \le 0 \Rightarrow x \in (-\infty, 0)$

Domain of
$$f(x)$$
 is $(-\infty,\infty) - \{0\}$

52. Answer (3)

Hint: Total number of relations from A to $B = 2^{n(A) \cdot n(B)}$

Sol.: Total number of relations from A to $B = \frac{2n(A) \cdot n(B)}{2}$

$$n(P(\phi)) = 1$$
 and $n(P(P(\phi))) = 2$

So total number of relations = $2^{1\times2} = 4$

53. Answer (1)

Hint:
$$3^{(4 \log_9 5) - 1} = \frac{1}{3} [3^{2 \log_3 5}]$$

Sol.:
$$3^{(4 \log_9 5) - 1} = \frac{1}{3} [3^{2 \log_3 5}]$$

= $\frac{1}{3} \cdot 3^{\log_3 5^2}$
= $\frac{25}{3}$

54. Answer (4)

Hint:
$$2 - x < 0 \cap x^2 + 7x + 12 \neq 0$$

Sol.:
$$f(x) = \frac{\log_3(2-x)}{x^2 + 7x + 12}$$

 $2-x > 0 \cap x^2 + 7x + 12 \neq 0$
 $\Rightarrow x < 2 \cap x \neq -3, -4$
 $\Rightarrow x \in (-\infty, 2) - \{-3, -4\}$

55. Answer (1)

Hint:
$$n(A \triangle B) = n \ (A \cup B) - n(A \cap B)$$

Sol.: ∴ $n(A - B) = n \ (A) - n(A \cap B)$
 $n(A \cap B) = 115 - 60 = 55$
∴ $n(A \triangle B) = n \ (A \cup B) - n(A \cap B)$
 $= 200 - 55 = 145$

56. Answer (4)

Hint: See Venn-diagram

Sol.: The shaded region contains those elements of universal set which are available in set B but not available in either set A or set C, that is $B - (A \cup C)$

57. Answer (3)

Hint: Use Venn-diagram

Sol.:

58. Answer (4)

Hint:
$$4^{\log_2 3} = 3^{\log_2 4} = 9$$

Sol.:
$$\log_{\frac{1}{3}} \left(\frac{\sqrt{3^6.\sqrt[3]{3^{-2} \cdot 3^{-4}}}}{3^{\log_2 4}} \right) = \log_{\frac{1}{3}} \left(\frac{3^2}{3^2} \right) = 0$$

59. Answer (2)

Hint:
$$\ln 3 = \frac{\ln 2}{x}$$
, $\ln = y \ln 2$ and $\ln 5 = \frac{\ln 2}{zx}$

Sol.:
$$x = \log_3^2 \Rightarrow \frac{\ln 2}{\ln 3} = x \Rightarrow \ln 3 = \frac{\ln 2}{x}$$

Similarly,
$$\ln = y \ln 2$$
 and $\ln 5 = \frac{\ln 3}{z} = \frac{\ln 2}{zx}$

Now,
$$\log_{42} 70 = \frac{\ln 70}{\ln 42} = \frac{\ln 2 + \ln 5 + \ln 7}{\ln 2 + \ln 3 + \ln 7}$$

$$= \frac{\ln 2 + \frac{\ln 2}{zx} + y \ln 2}{\ln 2 + \frac{\ln 2}{x} + y \ln 2}$$

$$= \frac{1 + \frac{1}{zx} + y}{1 + \frac{1}{x} + y}$$

$$= \frac{xyz + zx + 1}{z(x + yx + 1)}$$

$$= \frac{xyz + zx + 1}{xyz + zx + z}$$

Hint:
$$\frac{x-3}{2} \le \frac{1}{2} \cap x > 3$$

Sol.: Domain of
$$\log_{\frac{1}{2}} \left(\frac{x-3}{2} \right)$$
 is $\frac{x-3}{2} > 0$
 $\Rightarrow x \in (3, \infty)$
and, $\log_{\frac{1}{2}} \left(\frac{x-3}{2} \right) \ge 1 \Rightarrow \frac{x-3}{2} \le \frac{1}{2} \Rightarrow x \le 4$
 $x \in (3, 4]$

61. Answer (4)

Hint: Factorise $x^2 + 2x - 3$

Sol.:
$$y = \frac{x^2 + 2x - 3}{x^2 - 1}$$

$$= \frac{(x - 1)(x + 3)}{(x - 1)(x + 1)}$$

$$y = \frac{x + 3}{x + 1}, (x \neq 1)$$

$$x = \frac{3 - y}{y - 1}$$

$$\therefore y \neq 1, 2$$

$$y \in R - \{1, 2\}$$

62. Answer (1)

Hint: Transformation of graphs.

Sol. :
$$y = f(-x)$$

Now, y = f(-|x|)

63. Answer (2)

Hint:
$$a^{\log_b^c} = c^{\log_b^a}$$

Sol.:
$$4^{\log_2(x+4)} = (\sqrt{5} - 1)^{\log_{(6-2\sqrt{5})}^{81}}$$

 $\Rightarrow (x+4)^{\log_2^4} = 81 \log_{(\sqrt{5}-1)^2} (\sqrt{5} - 1)$
 $\Rightarrow (x+4)^2 = 81^{\frac{1}{2}}$
 $\Rightarrow x+4=3 \text{ or } x+4=-3$
 $\Rightarrow x=-1 \text{ or } -7$

64. Answer (3)

Hint: $||x|-1| = \frac{1}{x^2}$, then solve graphically.

But x = -7 is not in domain

Sol.:

$$||x|-1|=\frac{1}{x^2}$$

$$y = ||x| - 1|$$
 and $y = \frac{1}{x^2}$

Number of solutions = 2

65. Answer (2)

Hint: As x > 0, so the given equation

$$\log_{e} x = \frac{1}{x+1}$$

Hint:
$$f(x) + f(1-x) = \frac{1}{3}$$

Sol.:
$$f(1-x) = \frac{3^{1-2x}}{9^{1-x}+3} = \frac{3}{9+3.9^x} = \frac{1}{9^x+3}$$

$$\Rightarrow f(x) + f(1-x) = \frac{3^{2x-1}+1}{9^x+3} = \frac{1}{3}$$
So, $f(\frac{1}{2017}) + f(\frac{2016}{2017}) = \frac{1}{3}$

$$= f(\frac{2}{2017}) + f(\frac{2015}{2017}) \text{ and so on.}$$
Then, $\sum_{x=1}^{2016} f(\frac{r}{2017}) = \frac{1}{3}(\frac{2016}{2}) = 336$

67. Answer (2)

Hint: $R = \{(4, 2)\}$

Sol.: If $\frac{x}{y}$ is a prime number then only possible values of (x, y) is (4, 2).

68. Answer (3)

Hint: Draw the graphs of y = |x + 2| and $y = -\sqrt{4 - x^2}$

Sol.: x = -2 is the only solution

69. Answer (2)

Hint: Use wavy curve method

Sol.:
$$(x^2 - 2x - 1) (x^2 - 2x - 2) - 2 < 0$$

 $\Rightarrow x^4 - 4x^3 + x^2 + 6x < 0$
 $\Rightarrow x(x + 1) (x - 2) (x - 3) < 0$

XC(1, 0)

70. Answer (4)

Hint:
$$\log_b^a = \frac{\ln a}{\ln b}$$

Sol.: (1) $\log_5(200) > 3$

(2)
$$\frac{1}{\log_5 80} + \frac{2}{\log_4 80} = \log_{80} 5 + 2\log_{80} 4$$

$$= log_{80} (5 \times 16) = 1$$

(3) $log_29 > 3$ and $log_316 < 3$

(4)
$$\log_3 20 + \log_4 20 < \log_2 20$$

$$\Rightarrow \frac{\ln 20}{\ln 3} + \frac{\ln 20}{\ln 4} < \frac{\ln 20}{\ln 2}$$

$$\Rightarrow \frac{1}{\ln 3} < \frac{1}{\ln 2} - \frac{1}{2\ln 2}$$

$$\Rightarrow \frac{1}{\ln 3} < \frac{1}{2\ln 2}$$

$$\Rightarrow \frac{1}{\ln 3} < \frac{1}{2\ln 4} \text{ (Incorrect)}$$

71. Answer (04)

Hint: f(-x) = f(x)

Sol.: f(-1) = f(1) and f(-2) = 2

So there will be atleast 4 elements in set R

$$B = \{f(0), f(-1), f(-2), f(-3)\}$$

72. Answer (46)

Hint: Number of students reading atmost one newspaper = $70 - n(A \cap B) - n(B \cap C) - n(C \cap A) + 2n(A \cap B \cap C)$

Sol.: Number of students reading atleast two newspapers

=
$$n(A \cap B) + n(B \cap C) + n(C \cap A) = -2.n(A \cap B \cap C)$$

= $5 + 10 + 15 - 2^3 = 24$

So, number of students reading atmost one newspaper = 70 - 24 = 46

73. Answer (04)

Hint: Use wavy curve to solve the inequations.

Sol.:
$$\frac{x+1}{(x-4)(x-9)^2} \ge 0$$

 $x \in (-\infty, -1] \cup (4, 9) \cup (9, \infty)$

and
$$\frac{(x+1)^{2020}(x+3)^{6}(x-8)^{8}}{x(x-6)} \le 0$$

$$x \in (0, 6] \cup \{-3, -1, 8\}$$

So,
$$x \in (4, 6) \cup \{-3, -1, 8\}$$

Integral values of x are -3, -1, 5 and 8.

74. Answer (10)

Hint:
$$\log_{10}(x^{1+\log_{10}x}) = 2$$
 then put $\log_{10}x = t$

Sol.:
$$x^{1+\log_{10} x} = 100$$

$$\Rightarrow (1 + \log_{10} x) \log_{10} x = 2$$

Put
$$\log_{10} x = t$$

$$\Rightarrow t^2 + t - 2 = 0$$

$$\Rightarrow t=1,-2$$

$$x = 10^{1}, 10^{-2}$$

Product of roots is $\frac{1}{10}$

75. Answer (04)

Hint: $n((A \times B) \cap (B \times A)) = (n(A \cap B))^2$

Sol.: If $(x, y) \in (A \times B)$ and $(x, y) \in B \times A$

Then $x \in A$ and $x \in B$ similarly

$$Y \in A \text{ and } y \in B$$

So
$$x, y \in A \cap B$$

Number of ordered pairs common to $A \times B$

and
$$B \times A$$
 is $(n(A \cap B))^2$

All India Aakash Test Series for JEE (Main)-2021

TEST -1 - Code-D

Test Date: 06/10/2019

ANSWERS									
PHYSICS		CHEMISTRY		MATHEMATICS					
1.	(3)	26.	(3)	51.	(4)				
2.	(4)	27.	(4)	52.	(2)				
3.	(2)	28.	(4)	53.	(3)				
4.	(1)	29.	(1)	54.	(2)				
5.	(1)	30.	(4)	55.	(4)				
6.	(2)	31.	(3)	56.	(2)				
7.	(3)	32.	(3)	57.	(3)				
8.	(4)	33.	(3)	58.	(2)				
9.	(4)	34.	(1)	59.	(1)				
10.	(3)	35.	(4)	60.	(4)				
11.	(2)	36.	(4)	61.	(2)				
12.	(2)	37.	(3)	62.	(2)				
13.	(3)	38.	(4)	63.	(4)				
14.	(3)	39.	(3)	64.	(3)				
15.	(2)	40.	(2)	65.	(4)				
16.	(1)	41.	(1)	66.	(1)				
17.	(4)	42.	(3)	67.	(4)				
18.	(1)	43.	(2)	68.	(1)				
19.	(1)	44.	(4)	69.	(3)				
20.	(4)	45.	(3)	70.	(1)				
21.	(16)	46.	(28)	71.	(04)				
22.	(55)	47.	(32)	72.	(10)				
23.	(46)	48.	(10)	73.	(04)				
24.	(21)	49.	(50)	74.	(46)				
25.	(50)	50.	(36)	75.	(04)				

HINTS & SOLUTIONS

PART - A (PHYSICS)

1. Answer (3)

Hint: Apply
$$s = ut + \frac{1}{2}at^2$$

Sol.:
$$\frac{1}{2}2\times3^2 + \left[6(t-3) - \frac{1}{2}2\times(t-3)^2\right] = 0$$

$$\Rightarrow$$
 18 + 12 t - 36 - 2(t^2 - 6 t + 9) = 0

$$\Rightarrow$$
 6t - 9 - t^2 + 6t - 9 = 0

$$t^2 - 12t - 18 = 0$$

$$t = \frac{12 \pm \sqrt{144 - 72}}{2}$$

$$=\frac{12\pm 6\sqrt{2}}{2}=(6+3\sqrt{2})s$$

2. Answer (4)

Hint:
$$125 = 5t^2 \Rightarrow t = 5 \text{ s}$$

Sol.:
$$S_{5th} = 0 + \frac{1}{2} \cdot 10[9] = 45 \text{ m}$$

$$S_{1st} = 5 \text{ m}$$

3. Answer (2)

Hint:
$$x_P = ut$$

Sol.:
$$x_Q = d + \frac{1}{2} at^2$$

$$0 = \frac{1}{2}a.2t - u \implies t = \frac{u}{a}$$

$$(x_Q - x_P)_{\min} = d + \frac{1}{2}a \cdot \frac{u^2}{a^2} - \frac{u^2}{a}$$

$$=d-\frac{u^2}{2a}$$

4. Answer (1)

Hint: For critical point y'=0

x = -3 is point of maxima

Sol.:
$$\frac{dy}{dx} = 6x^2 + 6x - 36 = 0$$

$$\Rightarrow x^2 + x - 6 = 0$$

$$x = -3 \text{ or } x = 2$$

$$\frac{d^2y}{dx^2} = 2x + 1$$

 \Rightarrow y has a maximum at x = -3

$$\Rightarrow$$
 $y_{\text{max}} = -54 + 27 + 108 + 7 = 88$

5. Answer (1)

Hint: Particle is instantaneously at rest at

$$t = 5 s$$

Sol.:
$$d_1 = \left(10 \times 5 - \frac{1}{2} 2 \times 5^2\right) - \left(10 \times 4 - \frac{1}{2} 2 \times 4^2\right)$$

$$= (50 - 25) - (40 - 16) = 1 \text{ m}$$

$$d_2 = \frac{1}{2} 2 \times 2^2 = 4 \text{ m}$$

$$\Rightarrow$$
 Average speed = $\frac{5}{3}$ m/s

6. Answer (2)

Hint:
$$\int \frac{dx}{ax+b} = \frac{1}{a} \ln(ax+b) + c$$

Sol.:
$$I = \frac{3}{3} \ln(3x+4)|_0^2 = \ln \frac{10}{4} = \ln \frac{5}{2}$$

7. Answer (3)

Hint:
$$V^2 = 9x$$

Sol.:
$$2V \frac{dV}{dt} = 9V \implies a = \frac{9}{2}$$

$$S = \frac{1}{2} \frac{9}{2} \cdot t^2 \implies 16 = 9t^2$$

$$\Rightarrow t = \frac{4}{3} s$$

$$V_{av} = \frac{4 \times 3}{4} = 3 \text{ m/s}$$

8. Answer (4)

Hint: Total time of journey

$$= 2 \times 90 = 180 \text{ minutes}$$

Sol.: Speed of river = $\frac{12}{3}$ = 4 km/h

9. Answer (4)

Hint: $\Delta V = \text{Area under } v - t \text{ graph}$

Sol.:
$$\Delta V = \frac{1}{2} \times 4 \times 5 - \frac{1}{2} 2 \times \frac{5}{2}$$

$$= 10 - 2.5 = 7.5 \text{ m/s}$$

$$V = V_i + \Delta V = 17.5 \text{ m/s}$$

10. Answer (3)

Hint:
$$x_Q - x_P = Vt - \frac{1}{2}at^2$$

Sol.: Graph is a downward parabola which initially goes up and then down.

$$Hint: \quad H = ut - \frac{1}{2}gt^2$$

Sol.:
$$\Rightarrow \frac{1}{2}gt^2 - ut + H = 0$$

$$t = \frac{u \pm \sqrt{u^2 - 2gH}}{g}$$

$$\Rightarrow t_1 + t_2 = \frac{2u}{g}$$

$$\Rightarrow u = \frac{g(t_1 + t_2)}{2}$$

$$0 = u^2 - 2gh_{\text{max}}$$

$$\Rightarrow h_{\text{max}} = \frac{u^2}{2g} = \frac{g(t_1 + t_2)^2}{8}$$

12. Answer (2)

Hint:
$$0 = u - gt_1 \Rightarrow t_1 = \frac{u}{g}$$

Sol.:
$$0 = H + ut - \frac{1}{2}gt^2$$

$$\Rightarrow \frac{1}{2}gt^2 - ut - H = 0$$

$$t = \frac{u + \sqrt{u^2 + 4Hg/2}}{g} = \frac{u + \sqrt{u^2 + 2Hg}}{g}$$

$$\frac{u + \sqrt{u^2 + 2Hg}}{g} = 3 \cdot \frac{u}{g}$$

$$\Rightarrow u^2 + 2Hg = 4u^2$$

$$\Rightarrow 2Hg = 3u^2 \Rightarrow H = \frac{3u^2}{2g}$$

13. Answer (3)

Hint:
$$\int_{u}^{u/2} v^{-1/2} dv = \int_{0}^{t} -k dt \implies 2v^{1/2} \Big|_{u}^{\frac{u}{2}} = -kt$$
$$\implies 2 \left[\sqrt{u} - \sqrt{\frac{u}{2}} \right] = kt$$

Sol.:
$$t = \frac{2\sqrt{u}}{k} \left[1 - \frac{1}{\sqrt{2}} \right] = \frac{\sqrt{u}}{k} [2 - \sqrt{2}]$$

14. Answer (3)

Hint: Mean value

$$= \frac{1.49 + 1.50 + 1.52 + 1.54 + 1.48}{5}$$

$$= \frac{7.53}{5} = 1.506 = 1.51 \text{ cm}$$

Sol.: Mean absolute error

$$= \frac{0.02 + 0.01 + 0.01 + 0.03 + 0.03}{5}$$
$$= \frac{0.1}{5} = 0.02$$
% error = $\frac{0.02}{4.54} \times 100 = 1.3\%$

Hint:
$$R_P = \frac{R_1 R_2}{R_1 + R_2} = \frac{3 \times 6}{9} = 2 \Omega$$

Sol.:
$$\frac{\Delta R_p}{2^2} = \frac{0.1}{9} + \frac{0.2}{36} = \frac{0.4 + 0.2}{36}$$

 $\Delta R_p = \frac{0.6}{9} = 0.067 = 0.1 \Omega$

16. Answer (1)

Hint:
$$A = 16.6 \times 4.7 = 78.02 \text{ cm}^2$$

Sol.: There will be only two significant figures as 4.7 cm has only two significant figures.

17. Answer (4)

Hint:
$$[\tau] = [\rho^x f^y v^z] = ML^2T^{-2}$$

Sol.: $\Rightarrow (ML^{-3})^x (T^{-1})^y (LT^{-1})^z = ML^2T^{-2}$
 $\Rightarrow x = 1, -3x + z = 2 \Rightarrow z = 2 + 3 = 5$
 $-y - z = -2 \Rightarrow y = 2 - 5 = -3$
 $\Rightarrow [\tau] = \rho f^{-3} v^{\delta}$

18. Answer (1)

Hint:
$$[a] = [LT^{-2}]$$

Sol.:
$$(c) = [a]^{1/2} = [L^{1/2}T^{-1}]$$

 $[b] = \frac{[L][a]}{T^3} = [L^2 T^{-5}]$

19. Answer (1)

Hint:
$$a = 12 - 3t = \frac{dv}{dt}$$

Sol.:
$$\int_{7}^{v} dv = \int_{1}^{5} (12 - 3t) dt$$
$$\Rightarrow v - 7 = \left(12t - \frac{3t^{2}}{2}\right)\Big|_{1}^{5} = 12$$
$$\Rightarrow v = 19 \text{ m/s}$$

20. Answer (4)

Hint:
$$1N = \frac{1 \text{kg m}}{s^2}$$

Sol.:
$$\frac{1}{\alpha} \cdot \frac{1}{\beta} (\gamma)^2 = \frac{\gamma^2}{\alpha \beta}$$

21. Answer (16)

Hint:
$$A = \int_{x}^{x_2} y dx$$

Sol.:
$$A = 24 - \int_{0}^{2} 3x^{2} dx = 24 - 8 = 16$$

22. Answer (55)

Hint:
$$S_{nth} = u + \frac{1}{2}a(2n-1)$$

Sol.:
$$S_{4th} = u - 5$$
 (7) = $u - 35$
 $S_{5th} = u - 5 \times 9 = u - 45$
 $u - 35 = 2(u - 45)$
 $\Rightarrow u = 90 - 35 = 55 \text{ m/s}$

23. Answer (46)

Hint:
$$x_{5 \text{ s}} = \frac{1}{2} 2 \times 5^2 = 25 \text{ m}, V_{5 \text{ s}} = 10 \text{ m/s}$$

Sol.:
$$x_{8 \text{ s}} = 25 + 10 \times 3 - \frac{1}{2} 2 \times 3^2 = 46 \text{ m}$$

24. Answer (21)

Hint:
$$\frac{dv}{dt} = (2t+4) \implies \int_{0}^{v} dv = \int_{0}^{3} (2t+4) dt$$

Sol.:
$$V = \left(\frac{2t^2}{2} + 4t\right)\Big|_{0}^{3} = 9 + 12 = 21 \text{ m/s}$$

25. Answer (50)

Hint:
$$v = -\frac{5}{2}x + 5$$

Sol.:
$$a = \frac{dv}{dt} = -\frac{5}{2}v = \frac{-5}{2}\left(\frac{-5}{2}x + 5\right)$$

= $\frac{25x}{4} - \frac{25}{2}$
 $a(x = 1 \text{ m}) = \frac{-25}{4}\text{ m/s}^2$

PART - B (CHEMISTRY)

26. Answer (3)

Hint: M. moles of H⁺ =
$$40 \times 0.2 + 60 \times 0.1 \times 2$$

= 20 m. moles

M. moles of OH⁻ = 150
$$\times$$
 0.1 = 15 m moles

Sol.: Volume of final solution = 250 mL

$$\therefore [H^+] = \frac{5}{250} = 0.02 \text{ M}$$

27. Answer (4)

$$= 50 \times 0.12$$

Moles of H₂O₂ reacted

$$= 6 \times 2.5$$

$$=\frac{15}{20}=0.75$$

$$= 0.75 \text{ mol/L}$$

$$\therefore$$
 % W/V = $\frac{0.75 \times 34}{10}$

$$= 2.55 \text{ g/M}$$

28. Answer (4)

Hint: Moles of KIO₃ =
$$\frac{64.2}{214}$$
 = 0.3 moles

Moles of KI =
$$\frac{83}{166}$$
 = 0.5 moles

Moles of HCI =
$$\frac{43.8}{36.5}$$
 = 1.2 moles

Sol.: HCl will act as limiting reagent.

$$\therefore$$
 Moles of ICI formed = $\frac{1.2}{2}$ = 0.6 moles

Moles of KCI formed =
$$\frac{1.2}{2}$$
 = 0.6 moles

Moles of H₂O formed =
$$\frac{1.2}{2}$$
 = 0.6 moles

∴ Total moles of products formed = 1.8 moles

29. Answer (1)

Hint: Reactant B will act as limiting reagent.

Sol.:
$$2A + 3B \rightarrow C$$

$$\therefore$$
 Moles of C formed = $\frac{8}{3}$ = 2.67 moles

30. Answer (4)

Test - 1 (Code-D) (Hints & Solutions)

All India Aakash Test Series for JEE (Main)-2021

Sol.: Screening effect follows the order: s > p > d > f

Atomic radius : B < Ga < Al < In < TI Ionic size : Mg^{2+} < Na^+ < F^- < O^{2-}

31. Answer (3)

Hint: Due to ns² configuration of Mg, addition of electron will lead to absorption of energy.

Sol.: Addition of electron to Na, Al and F leads to release of energy.

32. Answer (3)

Hint: For any element : IE₁< IE₂ (always)

Sol.: In periodic table He has highest ionisation energy.

Due to half filled electronic configuration IE of ns²np³ is more than that of ns²np² and ns²np⁴ outer electronic configuration.

33. Answer (3)

Hint: Mg²⁺ and Al³⁺ have same number of electrons.

Sol.: Size of given species follows the order $Mg > Al > Mg^{2+} > Al^{3+}$

34. Answer (1)

Hint& Sol. :

The given graph is for atomic radius (regular increase)

35. Answer (4)

Hint: s-block and p-block elements are called representative elements.

Sol.: Outer electronic configuration of f-block elements is (n-2)f¹⁻¹⁴(n-1)d⁰⁻¹ns²

Metallic character and reactivity increase down the group among s-block elements, and due to high reactivity they are never found in pure form in nature.

36. Answer (4)

Hint: Successive ionisation energy of any element always increases.

Sol.: The largest jump in I.E. is from I.E. $_2$ to I.E. $_3$

.. Most probable outermost electronic configuration is ns².

37. Answer (3)

Hint: Radial nodes of an orbital has spherical shape.

Sol.: Number of radial nodes of an orbital $= n - \ell - 1$

38. Answer (4)

Hint: Cathode rays particles are electrons while anode rays particles are positively charged ions.

Sol.: Anode rays particles can carry a integral multiple of the fundamental unit of electric charge.

39. Answer (3)

Hint: The removed electron belongs to outermost orbital i.e., 4s

Sol.: Possible quantum numbers for 3d orbital electron is $\left(3, 2, 0, \frac{1}{2}\right)$

Possible quantum numbers for 4s orbital electron is $\left(4, 0, 0, \frac{1}{2}\right)$

40. Answer (2)

Hint: According to Bohr's model,

Angular momentum of an electron ∞ orbit number.

Sol.:
$$A \cdot M = mvr = \frac{nh}{2\pi}$$

$$\therefore \frac{(A \cdot M)_{4, He^+}}{(A \cdot M)_{2, De^{3+}}} = \frac{4}{2} = 2$$

41. Answer (1)

Hint: For photoelectric effect to occur, the energy of incident photon should be more than work function of metal.

Sol.: Energy of incident photon

$$= \frac{hc}{\lambda}$$

$$\approx \frac{1240}{310} \text{ eV} = 4 \text{ eV}$$

:. Photoelectric effect is possible for metal A only.

42. Answer (3)

Hint: Iso-electronic species have same number of electrons.

Sol.: He+ and Li++ have one electron each while H+ has zero electron.

43. Answer (2)

Hint: Transition takes from 4th excited state i.e., 5th energy level.

All India Aakash Test Series for JEE (Main)-2021

Sol.: Total number of different photons emitted = 10

Out of 10 different photons, 4 belong to ultraviolet region.

3 each to the visible and infrared region.

Minimum wavelength photon or maximum energy photon belongs to ultraviolet region (5 \rightarrow 1 transition)

44. Answer (4)

Hint: In case of unielectronic species, energy of orbitals depends on n.

Sol.: For unielectronic species, higher the value of n, higher will be the energy level of orbital.

∴ Order of energy is : I < II = III < IV

45. Answer (3)

Hint: If a charged particle having charge qC is accelerated through a P.D. of V volts, its K.E. increase by qV J.

Sol.: de Broglie wavelength is given as:

$$\lambda = \frac{h}{\sqrt{2m(\text{K.E.})}}$$

$$\therefore \frac{\lambda_{\alpha}}{\lambda_{p}} = \sqrt{\frac{2m_{p} \cdot q_{p} \cdot 2V}{2m_{\alpha} \cdot q_{\alpha}V}} [m_{\alpha} = 4m_{p} \text{ and } q_{\alpha} = 2q_{p}]$$
$$= \sqrt{\frac{2 \times 2}{2 \times 4 \times 2}} = \frac{1}{2}$$

46. Answer (28)

Hint: Avg. mol. mass of air = $0.2 \times 32 + 0.8 \times 28$ = 28.8 g/mol

.. Moles of
$$N_2 = \frac{14.4}{28.8} \times 0.8$$

= 0.4 mol

Sol.: For given reaction N_2 will be the limiting reagent.

- .: Moles of Li₃N formed = 0.8
- \therefore Amount of Li₃N formed = 35 × 0.8

= 28 g

47. Answer (32)

Hint: % of C = 37.5 % of H = 12.5 % of O = 50 Sol.: C H O

% 37.5 12.5 50

moles $\frac{37.5}{12} = 3.125$ $\frac{12.5}{1} = 12.5$ $\frac{50}{16} = 3.125$ ratio $\frac{3.125}{3.125} = 1$ $\frac{12.5}{3.125} = 4$ $\frac{3.125}{3.125} = 1$

∴ Empirical formula = CH₄O

Empirical formula mass = 32

48. Answer (10)

Hint: During formation of cation, electrons are removed from outermost orbits first.

Sol.: Ground state electronic configuration of Fe³⁺ is

∴ Number of electrons having $s = -\frac{1}{2}$ = 1 + 3 + 1 + 5

= 10

49. Answer (50)

Hint: Moles of Fe³⁺ reacted = 2 x moles of NH₂OH (from 1st reaction)

Sol.: From reaction 1st

Moles of NH₂OH = $\frac{1}{2}$ × moles of Fe³⁺ reacted in 50 mL solution

 $= 5 \times 10^{-3}$ moles

.. Moles of NH₂OH in 10 ml original sample = 5×10^{-3} moles

 $\therefore \qquad \text{Molarity } = \frac{5 \times 10^{-3}}{10 \times 10^{-3}} = 0.5 \text{ M}$

50. Answer (36)

Hint: At STP 1 mole of any gas occupy 22.4 L.

Sol.: Volume of $H_2(g)$ produced = $\frac{3.136}{22.4}$

Assume mass of Al in 3 g sample = x

 $\therefore \quad \frac{3}{2} \cdot \frac{x}{27} + \frac{3-x}{24} = 0.14$

$$\Rightarrow \frac{3x}{54} + \frac{3-x}{24} = 0.14$$

$$\Rightarrow$$
 72x + 162 - 54x = 0.14 × 54 × 24

$$\Rightarrow$$
 x = 1.08 g

... % of AI in alloy =
$$\frac{1.08}{3} \times 100 = 36\%$$

PART - C (MATHEMATICS)

51. Answer (4)

Hint:
$$\log_b^a = \frac{\ln a}{\ln b}$$

Sol.:
$$(1) \log_5(200) > 3$$

(2)
$$\frac{1}{\log_5 80} + \frac{2}{\log_4 80} = \log_{80} 5 + 2\log_{80} 4$$

$$= \log_{80} (5 \times 16) = 1$$

(3)
$$\log_2 9 > 3$$
 and $\log_3 16 < 3$

(4)
$$\log_3 20 + \log_4 20 < \log_2 20$$

$$\Rightarrow \frac{\ln 20}{\ln 3} + \frac{\ln 20}{\ln 4} < \frac{\ln 20}{\ln 2}$$

$$\Rightarrow \frac{1}{\ln 3} < \frac{1}{\ln 2} - \frac{1}{2\ln 2}$$

$$\Rightarrow \frac{1}{\ln 3} < \frac{1}{2\ln 2}$$

$$\Rightarrow \frac{1}{\ln 3} < \frac{1}{\ln 4}$$
 (Incorrect)

52. Answer (2)

Hint: Use wavy curve method

Sol.:
$$(x^2 - 2x - 1) (x^2 - 2x - 2) - 2 < 0$$

 $\Rightarrow x^4 - 4x^3 + x^2 + 6x < 0$

$$\Rightarrow x(x+1)(x-2)(x-3) < 0$$

$$x \in (-1, 0) \cup (2, 3)$$

53. Answer (3)

Hint: Draw the graphs of y = |x + 2| and $y = -\sqrt{4 - x^2}$

Sol.: x = -2 is the only solution

54. Answer (2)

Hint:
$$R = \{(4, 2)\}$$

Sol.: If
$$\frac{x}{y}$$
 is a prime number then only possible values of (x, y) is $(4, 2)$.

55. Answer (4)

Hint:
$$f(x) + f(1-x) = \frac{1}{3}$$

Sol.:
$$f(1-x) = \frac{3^{1-2x}}{9^{1-x}+3} = \frac{3}{9+3.9^x} = \frac{1}{9^x+3}$$

$$\Rightarrow f(x)+f(1-x) = \frac{3^{2x-1}+1}{9^x+3} = \frac{1}{3}$$
So, $f(\frac{1}{2017})+f(\frac{2016}{2017})=\frac{1}{3}$

$$= f(\frac{2}{2017})+f(\frac{2015}{2017}) \text{ and so on.}$$
Then, $\sum_{r=1}^{2016} f(\frac{r}{2017}) = \frac{1}{3}(\frac{2016}{2}) = 336$

56. Answer (2)

Hint: As x > 0, so the given equation

57. Answer (3)

Hint: $||x|-1| = \frac{1}{x^2}$, then solve graphically.

Sol.:

Number of solutions = 2

Hint:
$$a^{\log_b^c} = c^{\log_b^a}$$

Sol.:
$$4^{\log_2(x+4)} = (\sqrt{5} - 1)^{\log_{(6-2\sqrt{5})}81}$$

 $\Rightarrow (x+4)^{\log_2^4} = 81 \log_{(\sqrt{5}-1)^2} (\sqrt{5} - 1)$

$$\Rightarrow (x+4)^2 = 81^{\frac{1}{2}}$$

$$\Rightarrow x+4=3 \text{ or } x+4=-3$$

$$\Rightarrow$$
 $x = -1$ or -7
But $x = -7$ is not in domain

59. Answer (1)

Hint: Transformation of graphs.

Sol. :
$$y = f(-x)$$

Now,
$$y = f(-|x|)$$

60. Answer (4)

Hint: Factorise
$$x^2 + 2x - 3$$

Sol.:
$$y = \frac{x^2 + 2x - 3}{x^2 - 1}$$

$$= \frac{(x - 1)(x + 3)}{(x - 1)(x + 1)}$$

$$y = \frac{x + 3}{x + 1}, (x \neq 1)$$

$$x = \frac{3 - y}{y - 1}$$

$$\therefore y \neq 1, 2$$

$$y \in R - \{1, 2\}$$

61. Answer (2)

Hint:
$$\frac{x-3}{2} \le \frac{1}{2} \cap x > 3$$

Sol.: Domain of
$$\log_{\frac{1}{2}} \left(\frac{x-3}{2} \right)$$
 is $\frac{x-3}{2} > 0$
 $\Rightarrow x \in (3, \infty)$

and,
$$\log_{\frac{1}{2}} \left(\frac{x-3}{2} \right) \ge 1 \Rightarrow \frac{x-3}{2} \le \frac{1}{2} \Rightarrow x \le 4$$

 $x \in (3, 4]$

62. Answer (2)

Hint:
$$\ln 3 = \frac{\ln 2}{x}$$
, $\ln = y \ln 2$ and $\ln 5 = \frac{\ln 2}{zx}$

Sol.:
$$x = \log_3^2 \Rightarrow \frac{\ln 2}{\ln 3} = x \Rightarrow \ln 3 = \frac{\ln 2}{x}$$

Similarly,
$$\ln = y \ln 2$$
 and $\ln 5 = \frac{\ln 3}{z} = \frac{\ln 2}{zx}$

Now,
$$\log_{42} 70 = \frac{\ln 70}{\ln 42} = \frac{\ln 2 + \ln 5 + \ln 7}{\ln 2 + \ln 3 + \ln 7}$$
$$= \frac{\ln 2 + \frac{\ln 2}{zx} + y \ln 2}{\ln 2 + \frac{\ln 2}{x} + y \ln 2}$$

$$=\frac{1+\frac{1}{zx}+y}{1+\frac{1}{x}+y}$$

$$=\frac{xyz+zx+1}{z(x+yx+1)}$$

$$=\frac{xyz+zx+1}{xyz+zx+z}$$

63. Answer (4)

Hint:
$$4^{\log_2 3} = 3^{\log_2 4} = 9$$

Sol.:
$$\log_{\frac{1}{3}} \left(\frac{\sqrt{3^6.\sqrt[3]{3^{-2} \cdot 3^{-4}}}}{3^{\log_2 4}} \right) = \log_{\frac{1}{3}} \left(\frac{3^2}{3^2} \right) = 0$$

64. Answer (3)

Hint: Use Venn-diagram

Sol.:

$$(A \cup B \cup C) \cap B' = (A \cup C) - B$$

Test - 1 (Code-D) (Hints & Solutions)

All India Aakash Test Series for JEE (Main)-2021

65. Answer (4)

Hint: See Venn-diagram

Sol.: The shaded region contains those elements of universal set which are available in set B but not available in either set A or set C, that is $B - (A \cup C)$

66. Answer (1)

Hint:
$$n(A\triangle B) = n(A \cup B) - n(A \cap B)$$

Sol.:
$$: n(A - B) = n(A) - n(A \cap B)$$

$$n(A \cap B) = 115 - 60 = 55$$

$$\therefore n(A\triangle B) = n (A \cup B) - n(A \cap B)$$

$$= 200 - 55 = 145$$

67. Answer (4)

Hint:
$$2 - x < 0 \cap x^2 + 7x + 12 \neq 0$$

Sol.:
$$f(x) = \frac{\log_3(2-x)}{x^2 + 7x + 12}$$

 $2-x > 0 \cap x^2 + 7x + 12 \neq 0$
 $\Rightarrow x < 2 \cap x \neq -3, -4$
 $\Rightarrow x \in (-\infty, 2) - \{-3, -4\}$

68. Answer (1)

Hint:
$$3^{(4 \log_9 5) - 1} = \frac{1}{3} [3^{2 \log_3 5}]$$

Sol.:
$$3^{(4 \log_9 5) - 1} = \frac{1}{3} [3^{2 \log_3 5}]$$

= $\frac{1}{3} \cdot 3^{\log_3 5^2}$
= $\frac{25}{3}$

69. Answer (3)

Hint: Total number of relations from A to $B = 2^{n(A).n(B)}$

Sol.: Total number of relations from A to $B = 2^{n(A) \cdot n(B)}$

$$n(P(\phi)) = 1$$
 and $n(P(P(\phi))) = 2$

So total number of relations = $2^{1\times2} = 4$

70. Answer (1)

Hint:
$$\frac{3^{x}-2^{x}}{x} \ge 0$$

Sol.:
$$f(x) = \sqrt{\frac{3^x - 2^x}{x}}$$

$$\frac{3^x-2^x}{y}\geq 0$$

If
$$x > 0$$
 then $3^x - 2^x \ge 0 \Rightarrow x \in (0, \infty)$

If
$$x < 0$$
 then $3^x - 2^x \le 0 \Rightarrow x \in (-\infty, 0)$

Domain of
$$f(x)$$
 is $(-\infty, \infty) - \{0\}$

71. Answer (04)

Hint:
$$n((A \times B) \cap (B \times A)) = (n(A \cap B))^2$$

Sol.: If
$$(x, y) \in (A \times B)$$
 and $(x, y) \in B \times A$

Then
$$x \in A$$
 and $x \in B$ similarly

$$Y \in A$$
 and $y \in B$

So
$$x, y \in A \cap B$$

Number of ordered pairs common to $A \times B$ and $B \times A$ is $(n(A \cap B))^2$

72. Answer (10)

Hint:
$$\log_{10}(x^{1+\log_{10}x}) = 2$$
 then put $\log_{10}x = t$

Sol.:
$$x^{1+\log_{10} x} = 100$$

 $\Rightarrow (1+\log_{10} x)\log_{10} x = 2$

Put
$$\log_{10} x = t$$

$$\Rightarrow t^2 + t - 2 = 0$$

$$\Rightarrow t=1,-2$$

$$x = 10^{1}, 10^{-2}$$

Product of roots is $\frac{1}{10}$

73. Answer (04)

Hint: Use wavy curve to solve the inequations.

Sol.:
$$\frac{x+1}{(x-4)(x-9)^2} \ge 0$$

$$x \in (-\infty, -1] \cup (4, 9) \cup (9, \infty)$$

and
$$\frac{(x+1)^{2020}(x+3)^6(x-8)^8}{x(x-6)} \le 0$$

$$x \in (0, 6] \cup \{-3, -1, 8\}$$

So,
$$x \in (4, 6) \cup \{-3, -1, 8\}$$

Integral values of x are -3, -1, 5 and 8.

74. Answer (46)

Hint: Number of students reading atmost one newspaper = $70 - n(A \cap B) - n(B \cap C) - n(C \cap A) + 2n(A \cap B \cap C)$

Sol.: Number of students reading atleast two

$$= n(A \cap B) + n(B \cap C) + n(C \cap A)$$

$$= -2.n(A \cap B \cap C)$$

newspapers

$$= 5 + 10 + 15 - 2^3 = 24$$

So, number of students reading atmost one newspaper = 70 - 24 = 46

75. Answer (04)

Hint: f(-x) = f(x)

Sol.: f(-1) = f(1) and f(-2) = 2

So there will be atleast 4 elements in set

В.

$$B = \{f(0), f(-1), f(-2), f(-3)\}$$