TEST -1 - Code-C

Test Date : 06/10/2019

ANSWERS

PHYSICS

1. (4)
2. (1)
3. (1)
4. (4)
5. (1)
6. (2)
7. (3)
8. (3)
9. (2)
10. (2)

CHEMISTRY

26. (3)
27. (4)
28. (2)
29. (3)
30. (1)
31. (2)
32. (3)
33. (4)
34. (3)
35. (4)
36. (4)
37. (1)
38. (3)
39. (3)
40. (3)
41. (4)
42. (1)
43. (4)
44. (4)
45. (3)
46. (36)
47. (50)
48. (10)
49. (32)
50. (28)

MATHEMATICS

51. (1)
52. (3)
53. (1)
54. (4)
55. (1)
56. (4)
57. (3)
58. (4)
59. (2)
60. (2)
61. (4)
62. (1)
63. (2)
64. (3)
65. (2)
66. (4)
67. (2)
68. (3)
69. (2)
70. (4)
71. (04)
72. (46)
73. (04)
74. (10)
75. (04)

HINTS \& SOLUTIONS

PART - A (PHYSICS)

1. Answer (4)

Hint: $1 \mathrm{~N}=\frac{1 \mathrm{~kg} \mathrm{~m}}{s^{2}}$
Sol. : $\frac{1}{\alpha} \cdot \frac{1}{\beta}(\gamma)^{2}=\frac{\gamma^{2}}{\alpha \beta}$
2. Answer (1)

Hint: $\quad a=12-3 t=\frac{d v}{d t}$
Sol. : $\int_{7}^{v} d v=\int_{1}^{5}(12-3 t) d t$

$$
\begin{aligned}
& \Rightarrow v-7=\left.\left(12 t-\frac{3 t^{2}}{2}\right)\right|_{1} ^{5}=12 \\
& \Rightarrow v=19 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

3. Answer (1)

Hint: $\quad[a]=\left[\mathrm{LT}^{-2}\right]$
Sol. : $(c)=[a]^{1 / 2}=\left[\mathrm{L}^{1 / 2} \mathrm{~T}^{-1}\right]$

$$
[b]=\frac{[\mathrm{L}][a]}{\mathrm{T}^{3}}=\left[\mathrm{L}^{2} \mathrm{~T}^{-5}\right]
$$

4. Answer (4)

Hint: $\quad[\tau]=\left[\rho^{x} f^{f} v^{z}\right]=\mathrm{ML}^{2} \mathrm{~T}^{-2}$

$$
\text { Sol. : } \begin{aligned}
\text { : } & \Rightarrow\left(\mathrm{ML}^{-3}\right)^{x}\left(\mathrm{~T}^{-1}\right)^{y}\left(\mathrm{LT}^{-1}\right)^{z}=\mathrm{ML}^{2} \mathrm{~T}^{-2} \\
& \Rightarrow x=1,-3 x+z=2 \Rightarrow z=2+3=5 \\
& -y-z=-2 \Rightarrow y=2-5=-3 \\
& \Rightarrow[\tau]=\rho f^{3} v^{5}
\end{aligned}
$$

5. Answer (1)

Hint: $A=16.6 \times 4.7=78.02 \mathrm{~cm}^{2}$
Sol. : There will be only two significant figures as 4.7 cm has only two significant figures.
6. Answer (2)

Hint: $\quad R_{P}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{3 \times 6}{9}=2 \Omega$
$R_{P}=2.0 \Omega$
Sol. : $\frac{\Delta R_{P}}{2^{2}}=\frac{0.1}{9}+\frac{0.2}{36}=\frac{0.4+0.2}{36}$

$$
\Delta R_{P}=\frac{0.6}{9}=0.067=0.1 \Omega
$$

7. Answer (3)

Hint: Mean value

$$
\begin{aligned}
& =\frac{1.49+1.50+1.52+1.54+1.48}{5} \\
& =\frac{7.53}{5}=1.506=1.51 \mathrm{~cm}
\end{aligned}
$$

Sol. : Mean absolute error

$$
\begin{aligned}
& \quad=\frac{0.02+0.01+0.01+0.03+0.03}{5} \\
& \quad=\frac{0.1}{5}=0.02 \\
& \% \text { error }=\frac{0.02}{1.51} \times 100=1.3 \%
\end{aligned}
$$

8. Answer (3)

Hint: $\int_{u}^{u / 2} v^{-1 / 2} d v=\int_{0}^{t}-\left.k d t \Rightarrow 2 v^{1 / 2}\right|_{u} ^{\frac{u}{2}}=-k t$

$$
\Rightarrow 2\left[\sqrt{u}-\sqrt{\frac{u}{2}}\right]=k t
$$

Sol. : $t=\frac{2 \sqrt{u}}{k}\left[1-\frac{1}{\sqrt{2}}\right]=\frac{\sqrt{u}}{k}[2-\sqrt{2}]$
9. Answer (2)

Hint: $0=u-g t_{1} \Rightarrow t_{1}=\frac{u}{g}$
Sol. : $0=H+u t-\frac{1}{2} g t^{2}$

$$
\begin{aligned}
& \Rightarrow \frac{1}{2} g t^{2}-u t-H=0 \\
& t=\frac{u+\sqrt{u^{2}+4 H g / 2}}{g}=\frac{u+\sqrt{u^{2}+2 H g}}{g} \\
& \frac{u+\sqrt{u^{2}+2 H g}}{g}=3 \cdot \frac{u}{g} \\
& \Rightarrow u^{2}+2 H g=4 u^{2} \\
& \Rightarrow 2 H g=3 u^{2} \Rightarrow H=\frac{3 u^{2}}{2 g}
\end{aligned}
$$

10. Answer (2)

Hint: $\quad H=u t-\frac{1}{2} g t^{2}$
Sol. : $\Rightarrow \frac{1}{2} g t^{2}-u t+H=0$

$$
\begin{aligned}
& t=\frac{u \pm \sqrt{u^{2}-2 g H}}{g} \\
& \Rightarrow t_{1}+t_{2}=\frac{2 u}{g} \\
& \Rightarrow u=\frac{g\left(t_{1}+t_{2}\right)}{2} \\
& 0=u^{2}-2 g h_{\max } \\
& \Rightarrow h_{\max }=\frac{u^{2}}{2 g}=\frac{g\left(t_{1}+t_{2}\right)^{2}}{8}
\end{aligned}
$$

11. Answer (3)

Hint: $\quad x_{Q}-x_{P}=V t-\frac{1}{2} a t^{2}$
Sol.: Graph is a downward parabola which initially goes up and then down.
12. Answer (4)

Hint: $\Delta V=$ Area under $v-t$ graph
Sol. : $\quad \Delta V=\frac{1}{2} \times 4 \times 5-\frac{1}{2} 2 \times \frac{5}{2}$

$$
=10-2.5=7.5 \mathrm{~m} / \mathrm{s}
$$

$$
V=V_{i}+\Delta V=17.5 \mathrm{~m} / \mathrm{s}
$$

13. Answer (4)

Hint: Total time of journey

$$
\begin{aligned}
& =2 \times 90=180 \text { minutes } \\
& =3 \mathrm{hr}
\end{aligned}
$$

Sol. : Speed of river $=\frac{12}{3}=4 \mathrm{~km} / \mathrm{h}$
14. Answer (3)

Hint: $\quad V^{2}=9 x$
Sol. : $2 V \frac{d V}{d t}=9 V \Rightarrow \quad a=\frac{9}{2}$

$$
\begin{aligned}
& S=\frac{1}{2} \frac{9}{2} \cdot t^{2} \Rightarrow 16=9 t^{2} \\
& \Rightarrow \quad t=\frac{4}{3} \mathrm{~s} \\
& V_{\mathrm{av}}=\frac{4 \times 3}{4}=3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

15. Answer (2)

Hint: $\int \frac{d x}{a x+b}=\frac{1}{a} \ln (a x+b)+c$
Sol. : $\quad I=\left.\frac{3}{3} \ln (3 x+4)\right|_{0} ^{2}=\ln \frac{10}{4}=\ln \frac{5}{2}$
16. Answer (1)

Hint: Particle is instantaneously at rest at $t=5 \mathrm{~s}$
Sol. : $\quad d_{1}=\left(10 \times 5-\frac{1}{2} 2 \times 5^{2}\right)-\left(10 \times 4-\frac{1}{2} 2 \times 4^{2}\right)$

$$
=(50-25)-(40-16)=1 \mathrm{~m}
$$

$$
d_{2}=\frac{1}{2} 2 \times 2^{2}=4 \mathrm{~m}
$$

$$
\Rightarrow \quad \text { Average speed }=\frac{5}{3} \mathrm{~m} / \mathrm{s}
$$

17. Answer (1)

Hint: For critical point $y^{\prime}=0$

$$
x=-3 \text { is point of maxima }
$$

Sol. : $\frac{d y}{d x}=6 x^{2}+6 x-36=0$

$$
\begin{aligned}
& \Rightarrow x^{2}+x-6=0 \\
& x=-3 \text { or } x=2 \\
& \frac{d^{2} y}{d x^{2}}=2 x+1
\end{aligned}
$$

$$
\Rightarrow y \text { has a maximum at } x=-3
$$

$$
\Rightarrow \quad y_{\max }=-54+27+108+7=88
$$

18. Answer (2)

Hint: $x_{P}=u t$
Sol. : $\quad x_{Q}=d+\frac{1}{2} a t^{2}$

$$
\begin{aligned}
& 0=\frac{1}{2} a \cdot 2 t-u \Rightarrow t=\frac{u}{a} \\
&\left(x_{Q}-x_{P}\right)_{\min }=d+\frac{1}{2} a \cdot \frac{u^{2}}{a^{2}}-\frac{u^{2}}{a} \\
&=d-\frac{u^{2}}{2 a}
\end{aligned}
$$

19. Answer (4)

Hint: $125=5 t^{2} \Rightarrow t=5 \mathrm{~s}$
Sol. : $S_{5 \mathrm{th}}=0+\frac{1}{2} 10[9]=45 \mathrm{~m}$

$$
S_{1 s t}=5 \mathrm{~m}
$$

20. Answer (3)

Hint: Apply $s=u t+\frac{1}{2} a t^{2}$
Sol. : $\frac{1}{2} 2 \times 3^{2}+\left[6(t-3)-\frac{1}{2} 2 \times(t-3)^{2}\right]=0$
$\Rightarrow 18+12 t-36-2\left(t^{2}-6 t+9\right)=0$
$\Rightarrow 6 t-9-t^{2}+6 t-9=0$

$$
\begin{aligned}
& t-12 t-18=0 \\
& t=\frac{12 \pm \sqrt{144-72}}{2} \\
& \quad=\frac{12 \pm 6 \sqrt{2}}{2}=(6+3 \sqrt{2}) \mathrm{s}
\end{aligned}
$$

21. Answer (50)

Hint: $v=-\frac{5}{2} x+5$
Sol. : $\quad a=\frac{d v}{d t}=-\frac{5}{2} v=\frac{-5}{2}\left(\frac{-5}{2} x+5\right)$

$$
\begin{aligned}
& =\frac{25 x}{4}-\frac{25}{2} \\
& a(x=1 \mathrm{~m})=\frac{-25}{4} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

22. Answer (21)

Hint: $\frac{d v}{d t}=(2 t+4) \Rightarrow \int_{0}^{v} d v=\int_{0}^{3}(2 t+4) d t$
Sol. : $V=\left.\left(\frac{2 t^{2}}{2}+4 t\right)\right|_{0} ^{3}=9+12=21 \mathrm{~m} / \mathrm{s}$
23. Answer (46)

Hint: $\quad x_{5 \mathrm{~s}}=\frac{1}{2} 2 \times 5^{2}=25 \mathrm{~m}, \quad V_{5 \mathrm{~s}}=10 \mathrm{~m} / \mathrm{s}$
Sol. : $x_{8 \mathrm{~s}}=25+10 \times 3-\frac{1}{2} 2 \times 3^{2}=46 \mathrm{~m}$
24. Answer (55)

Hint: $\quad S_{n \mathrm{nh}}=u+\frac{1}{2} a(2 n-1)$
Sol. : $S_{4 \text { th }}=u-5(7)=u-35$
$S_{5 \text { th }}=u-5 \times 9=u-45$
$u-35=2(u-45)$
$\Rightarrow u=90-35=55 \mathrm{~m} / \mathrm{s}$
25. Answer (16)

Hint: $\quad A=\int_{x_{1}}^{x_{2}} y d x$

Sol. : $\quad A=24-\int_{0}^{2} 3 x^{2} d x=24-8=16$

PART - B (CHEMISTRY)

26. Answer (3)

Hint: If a charged particle having charge qC is accelerated through a P.D. of V volts, its K.E. increase by $q V J$.

Sol. : de Broglie wavelength is given as:

$$
\begin{aligned}
& \lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}(\mathrm{K.E.})}} \\
& \begin{aligned}
\therefore \frac{\lambda_{\alpha}}{\lambda_{\mathrm{p}}} & =\sqrt{\frac{2 \mathrm{~m}_{\mathrm{p}} \cdot \mathrm{q}_{\mathrm{p}} \cdot 2 \mathrm{~V}}{2 \mathrm{~m}_{\alpha} \cdot \mathrm{q}_{\alpha} \mathrm{V}}}\left[\mathrm{~m}_{\alpha}=4 \mathrm{~m}_{\mathrm{p}} \text { and } \mathrm{q}_{\alpha}=2 \mathrm{q}_{\mathrm{p}}\right] \\
& =\sqrt{\frac{2 \times 2}{2 \times 4 \times 2}}=\frac{1}{2}
\end{aligned}
\end{aligned}
$$

27. Answer (4)

Hint: In case of unielectronic species, energy of orbitals depends on n.
Sol.: For unielectronic species, higher the value of n, higher will be the energy level of orbital.
\therefore Order of energy is: I II $=\mathrm{III}<$ IV
28. Answer (2)

Hint: Transition takes from $4^{\text {th }}$ excited state i.e., $5^{\text {th }}$ energy level.

Sol. : Total number of different photons emitted $=10$
Out of 10 different photons, 4 belong to ultraviolet region.
3 each to the visible and infrared region.
Minimum wavelength photon or maximum energy photon belongs to ultraviolet region ($5 \rightarrow 1$ transition)
29. Answer (3)

Hint: Iso-electronic species have same number of electrons.
Sol.: He^{+}and Li^{++}have one electron each while H^{+}has zero electron.
30. Answer (1)

Hint: For photoelectric effect to occur, the energy of incident photon should be more than work function of metal.
Sol. : Energy of incident photon

$$
\begin{aligned}
& =\frac{\mathrm{hc}}{\lambda} \\
& \approx \frac{1240}{310} \mathrm{eV}=4 \mathrm{eV}
\end{aligned}
$$

\therefore Photoelectric effect is possible for metal A only.
31. Answer (2)

Hint: According to Bohr's model,
Angular momentum of an electron \propto orbit number.

Sol. : $\quad A \cdot M=m v r=\frac{n h}{2 \pi}$

$$
\therefore \quad \frac{(\mathrm{A} \cdot \mathrm{M})_{4, \mathrm{He}^{+}}}{(\mathrm{A} \cdot \mathrm{M})_{2, \mathrm{Be}^{3+}}}=\frac{4}{2}=2
$$

32. Answer (3)

Hint: The removed electron belongs to outermost orbital i.e., 4s
Sol. : Possible quantum numbers for 3d orbital electron is $\left(3,2,0, \frac{1}{2}\right)$
Possible quantum numbers for 4 s orbital electron is $\left(4,0,0, \frac{1}{2}\right)$
33. Answer (4)

Hint: Cathode rays particles are electrons while anode rays particles are positively charged ions.
Sol. : Anode rays particles can carry a integral multiple of the fundamental unit of electric charge.
34. Answer (3)

Hint: Radial nodes of an orbital has spherical shape.
Sol. : Number of radial nodes of an orbital $=\mathrm{n}-\ell-1$
35. Answer (4)

Hint: Successive ionisation energy of any element always increases.
Sol. : The largest jump in I.E. is from I.E. 2 to I.E. 3
\therefore Most probable outermost electronic configuration is ns^{2}.
36. Answer (4)

Hint: s-block and p-block elements are called representative elements.
Sol.: Outer electronic configuration of f-block elements is $(n-2) f^{1-14}(n-1) d^{0-1} n s^{2}$
Metallic character and reactivity increase down the group among s-block elements, and due to high reactivity they are never found in pure form in nature.
37. Answer (1)

Hint\& Sol. :
The given graph is for atomic radius (regular increase)
38. Answer (3)

Hint: Mg^{2+} and Al^{3+} have same number of electrons.
Sol. : Size of given species follows the order $\mathrm{Mg}>\mathrm{Al}>\mathrm{Mg}^{2+}>\mathrm{Al}^{3+}$
39. Answer (3)

Hint: For any element: $\mathrm{IE}_{1}<\mathrm{IE}$ (always)
Sol. : In periodic table He has highest ionisation energy.
Due to half filled electronic configuration IE of $n s^{2} n p^{3}$ is more than that of $n s^{2} n p^{2}$ and $n s^{2} n p^{4}$ outer electronic configuration.
40. Answer (3)

Hint: Due to ns^{2} configuration of Mg , addition of electron will lead to absorption of energy.
Sol. : Addition of electron to Na, Al and F leads to release of energy.
41. Answer (4)

Hint: Correct order of ionisation energy:

$$
\mathrm{B}>\mathrm{Tl}>\mathrm{Ga}>\mathrm{Al}>\mathrm{In}
$$

Sol. : Screening effect follows the order: $s>p$ $>d>f$

Atomic radius: $\mathrm{B}<\mathrm{Ga}<\mathrm{Al}<\mathrm{In}<\mathrm{Tl}$ Ionic size : $\mathrm{Mg}^{2+}<\mathrm{Na}^{+}<\mathrm{F}^{-}<\mathrm{O}^{2-}$
42. Answer (1)

Hint: Reactant B will act as limiting reagent.
Sol. :

$$
2 A+3 B \rightarrow C
$$

Initial moles
68 (L.R)
$\therefore \quad$ Moles of C formed $=\frac{8}{3}=2.67$ moles

43. Answer (4)

Hint: Moles of $\mathrm{KIO}_{3}=\frac{64.2}{214}=0.3$ moles
Moles of KI $=\frac{83}{166}=0.5$ moles
Moles of $\mathrm{HCl}=\frac{43.8}{36.5}=1.2$ moles

Sol. : HCl will act as limiting reagent.
\therefore Moles of ICI formed $=\frac{1.2}{2}=0.6$ moles
Moles of KCl formed $=\frac{1.2}{2}=0.6$ moles
Moles of $\mathrm{H}_{2} \mathrm{O}$ formed $=\frac{1.2}{2}=0.6$ moles
\therefore Total moles of products formed $=1.8$ moles
44. Answer (4)

Hint: 2 moles of KMnO_{4} reacts with 5 moles of $\mathrm{H}_{2} \mathrm{O}$.
Sol. : m moles of KMnO_{4} reacted

$$
\begin{aligned}
& =50 \times 0.12 \\
& =6 \mathrm{~m} \cdot \mathrm{moles}
\end{aligned}
$$

Moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ reacted

$$
\begin{aligned}
& =6 \times 2.5 \\
& =15 \mathrm{~m} \text { moles }
\end{aligned}
$$

\therefore Molarity of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution

$$
\begin{aligned}
&=\frac{15}{20}=0.75 \\
&= 0.75 \mathrm{~mol} / \mathrm{L} \\
& \therefore \quad \% \mathrm{~W} / \mathrm{V}=\frac{0.75 \times 34}{10} \\
&=2.55 \mathrm{~g} / \mathrm{mL}
\end{aligned}
$$

45. Answer (3)

Hint: M. moles of $\mathrm{H}^{+}=40 \times 0.2+60 \times 0.1 \times 2$

$$
=20 \mathrm{~m} . \mathrm{moles}
$$

M. moles of $\mathrm{OH}^{-}=150 \times 0.1=15 \mathrm{~m}$ moles
Sol. : Volume of final solution $=250 \mathrm{~mL}$
$\therefore\left[\mathrm{H}^{+}\right]=\frac{5}{250}=0.02 \mathrm{M}$
46. Answer (36)

Hint: At STP 1 mole of any gas occupy 22.4 L .

Sol. : Volume of $\mathrm{H}_{2}(\mathrm{~g})$ produced $=\frac{3.136}{22.4}$

$$
=0.14
$$

Assume mass of Al in 3 g sample $=\mathrm{x}$

$$
\begin{aligned}
& \therefore \frac{3}{2} \cdot \frac{x}{27}+\frac{3-x}{24}=0.14 \\
& \Rightarrow \frac{3 x}{54}+\frac{3-x}{24}=0.14
\end{aligned}
$$

$\Rightarrow 72 x+162-54 x=0.14 \times 54 \times 24$
$\Rightarrow \mathrm{x}=1.08 \mathrm{~g}$
$\therefore \quad \%$ of Al in alloy $=\frac{1.08}{3} \times 100=36 \%$
47. Answer (50)

Hint: Moles of Fe^{3+} reacted $=2 \times$ moles of $\mathrm{NH}_{2} \mathrm{OH}$ (from $1^{\text {st }}$ reaction)
Sol. : From reaction $1^{\text {st }}$
Moles of $\mathrm{NH}_{2} \mathrm{OH}=\frac{1}{2} \times$ moles of Fe^{3+} reacted in 50 mL solution

$$
=5 \times 10^{-3} \text { moles }
$$

$\therefore \quad$ Moles of $\mathrm{NH}_{2} \mathrm{OH}$ in 10 ml original sample $=5 \times 10^{-3}$ moles
$\therefore \quad$ Molarity $=\frac{5 \times 10^{-3}}{10 \times 10^{-3}}=0.5 \mathrm{M}$
48. Answer (10)

Hint: During formation of cation, electrons are removed from outermost orbits first.
Sol.: Ground state electronic configuration of Fe^{3+} is

$$
\begin{array}{ccccccc}
1 s^{2} & 2 s^{2} & 2 p^{6} & 3 s^{2} & 3 p^{6} & 3 d^{5} \\
\mathrm{n}+\mathrm{l}= & 1 & 2 & 3 & 3 & 4 & 5
\end{array}
$$

\therefore Number of electrons having $\mathrm{s}=-\frac{1}{2}$

$$
\begin{aligned}
& =1+3+1+5 \\
& =10
\end{aligned}
$$

49. Answer (32)

Hint: \% of $\mathrm{C}=37.5$
$\%$ of $\mathrm{H}=12.5$
$\%$ of $\mathrm{O}=50$
Sol. :

:	C	H	O
$\%$	37.5	12.5	50
moles	$\frac{37.5}{12}=3.125$	$\frac{12.5}{1}=12.5$	$\frac{50}{16}=3.125$
ratio	$\frac{3.125}{3.125}=1$	$\frac{12.5}{3.125}=4$	$\frac{3.125}{3.125}=1$

\therefore Empirical formula $=\mathrm{CH}_{4} \mathrm{O}$
Empirical formula mass $=32$
50. Answer (28)

Hint: Avg. mol. mass of air $=0.2 \times 32+0.8 \times 28$

$$
=28.8 \mathrm{~g} / \mathrm{mol}
$$

$\therefore \quad$ Moles of $\mathrm{N}_{2}=\frac{14.4}{28.8} \times 0.8$

$$
=0.4 \mathrm{~mol}
$$

Sol. : For given reaction N_{2} will be the limiting reagent.
\therefore Moles of $\mathrm{Li}_{3} \mathrm{~N}$ formed $=0.8$
\therefore Amount of $\mathrm{Li}_{3} \mathrm{~N}$ formed $=35 \times 0.8$

$$
=28 \mathrm{~g}
$$

PART - C (MATHEMATICS)

51. Answer (1)

Hint: $\frac{3^{x}-2^{x}}{x} \geq 0$
Sol.: $f(x)=\sqrt{\frac{3^{x}-2^{x}}{x}}$
$\frac{3^{x}-2^{x}}{x} \geq 0$
If $x>0$ then $3^{x}-2^{x} \geq 0 \Rightarrow x \in(0, \infty)$
If $x<0$ then $3^{x}-2^{x} \leq 0 \Rightarrow x \in(-\infty, 0)$
Domain of $f(x)$ is $(-\infty, \infty)-\{0\}$
52. Answer (3)

Hint: Total number of relations from A to $B=$ $2^{n(A) \cdot n(B)}$
Sol. : Total number of relations from A to $B=$ $2^{n(A) \cdot n(B)}$
$n(P(\phi))=1$ and $n(P(P(\phi)))=2$
So total number of relations $=2^{1 \times 2}=4$
53. Answer (1)

Hint: $3^{\left(4 \log _{9} 5\right)-1}=\frac{1}{3}\left[3^{2 \log _{3} 5}\right]$
Sol. : $3^{\left(4 \log _{9} 5\right)-1}=\frac{1}{3}\left[3^{2 \log _{3} 5}\right]$

$$
\begin{aligned}
& =\frac{1}{3} \cdot 3^{\log _{3} 5^{2}} \\
& =\frac{25}{3}
\end{aligned}
$$

54. Answer (4)

Hint: $2-x<0 \cap x^{2}+7 x+12 \neq 0$

Sol. : $f(x)=\frac{\log _{3}(2-x)}{x^{2}+7 x+12}$
$2-x>0 \cap x^{2}+7 x+12 \neq 0$
$\Rightarrow x<2 \cap x \neq-3,-4$
$\Rightarrow x \in(-\infty, 2)-\{-3,-4\}$
55. Answer (1)

Hint: $n(A \Delta B)=n(A \cup B)-n(A \cap B)$
Sol. : $\because n(A-B)=n(A)-n(A \cap B)$

$$
\begin{aligned}
n(A \cap B) & =115-60=55 \\
\because n(A \Delta B) & =n(A \cup B)-n(A \cap B) \\
& =200-55=145
\end{aligned}
$$

56. Answer (4)

Hint: See Venn-diagram
Sol. : The shaded region contains those elements of universal set which are available in set B but not available in either set A or set C, that is $B-(A \cup C)$
57. Answer (3)

Hint: Use Venn-diagram
Sol. :

$(A \cup B \cup C) B^{\prime}=(A \cup C)-B$
58. Answer (4)

Hint: $\quad 4^{\log _{2} 3}=3^{\log _{2} 4}=9$
Sol. : $\log _{\frac{1}{3}}\left(\frac{\sqrt{3^{6} \cdot \sqrt[3]{3^{-2} \cdot 3^{-4}}}}{3^{\log _{2} 4}}\right)=\log _{\frac{1}{3}}\left(\frac{3^{2}}{3^{2}}\right)=0$
59. Answer (2)

Hint: $\ln 3=\frac{\ln 2}{x}, \ln =y \ln 2$ and $\ln 5=\frac{\ln 2}{z x}$
Sol. : $\because x=\log _{3}^{2} \Rightarrow \frac{\ln 2}{\ln 3}=x \Rightarrow \ln 3=\frac{\ln 2}{x}$
Similarly, $\ln =y \ln 2$ and $\ln 5=\frac{\ln 3}{z}=\frac{\ln 2}{z x}$

$$
\text { Now, } \log _{42} 70=\frac{\ln 70}{\ln 42}=\frac{\ln 2+\ln 5+\ln 7}{\ln 2+\ln 3+\ln 7}
$$

$$
\begin{aligned}
& =\frac{\ln 2+\frac{\ln 2}{z x}+y \ln 2}{\ln 2+\frac{\ln 2}{x}+y \ln 2} \\
& =\frac{1+\frac{1}{z x}+y}{1+\frac{1}{x}+y} \\
& =\frac{x y z+z x+1}{z(x+y x+1)} \\
& =\frac{x y z+z x+1}{x y z+z x+z}
\end{aligned}
$$

60. Answer (2)

Hint: $\quad \frac{x-3}{2} \leq \frac{1}{2} \cap x>3$
Sol. : Domain of $\log _{\frac{1}{2}}\left(\frac{x-3}{2}\right)$ is $\frac{x-3}{2}>0$

$$
\Rightarrow \quad x \in(3, \infty)
$$

and, $\log _{\frac{1}{2}}\left(\frac{x-3}{2}\right) \geq 1 \Rightarrow \frac{x-3}{2} \leq \frac{1}{2} \Rightarrow x \leq 4$

$$
x \in(3,4]
$$

61. Answer (4)

Hint: Factorise $x^{2}+2 x-3$
Sol. : $y=\frac{x^{2}+2 x-3}{x^{2}-1}$

$$
\begin{aligned}
& =\frac{(x-1)(x+3)}{(x-1)(x+1)} \\
& y=\frac{x+3}{x+1},(x \neq 1) \\
& x=\frac{3-y}{y-1} \\
& \therefore \quad y \neq 1,2 \\
& y \in R-\{1,2\}
\end{aligned}
$$

62. Answer (1)

Hint: Transformation of graphs.
Sol. : $y=f(-x)$

Now, $y=f(-|x|)$

63. Answer (2)

Hint: $a^{\log _{b}^{c}}=c^{\log _{b}^{a}}$
Sol. : $4^{\log _{2}(x+4)}=(\sqrt{5}-1)^{\log _{(6-2 \sqrt{5})^{81}}}$

$$
\begin{aligned}
& \Rightarrow(x+4)^{\log _{2} 4}=81 \log _{(\sqrt{5}-1)^{2}}(\sqrt{5}-1) \\
& \Rightarrow(x+4)^{2}=81^{\frac{1}{2}} \\
& \Rightarrow x+4=3 \text { or } x+4=-3 \\
& \Rightarrow x=-1 \text { or }-7
\end{aligned}
$$

But $x=-7$ is not in domain
64. Answer (3)

Hint: $||x|-1|=\frac{1}{x^{2}}$, then solve graphically.
Sol. :

$||x|-1|=\frac{1}{x^{2}}$
$y=||x|-1|$ and $y=\frac{1}{x^{2}}$
Number of solutions $=2$
65. Answer (2)

Hint: As $x>0$, so the given equation

$$
\log _{e} x=\frac{1}{x+1}
$$

Sol. :

66. Answer (4)

Hint: $\quad f(x)+f(1-x)=\frac{1}{3}$
Sol. : $f(1-x)=\frac{3^{1-2 x}}{9^{1-x}+3}=\frac{3}{9+3.9^{x}}=\frac{1}{9^{x}+3}$
$\Rightarrow f(x)+f(1-x)=\frac{3^{2 x-1}+1}{9^{x}+3}=\frac{1}{3}$
So, $f\left(\frac{1}{2017}\right)+f\left(\frac{2016}{2017}\right)=\frac{1}{3}$

$$
=f\left(\frac{2}{2017}\right)+f\left(\frac{2015}{2017}\right) \text { and so on. }
$$

Then, $\sum_{r=1}^{2016} f\left(\frac{r}{2017}\right)=\frac{1}{3}\left(\frac{2016}{2}\right)=336$
67. Answer (2)

Hint: $\quad R=\{(4,2)\}$
Sol. : If $\frac{x}{y}$ is a prime number then only possible values of (x, y) is $(4,2)$.
68. Answer (3)

Hint: Draw the graphs of $y=|x+2|$ and $y=-\sqrt{4-x^{2}}$

Sol. : $x=-2$ is the only solution

69. Answer (2)

Hint: Use wavy curve method
Sol. : $\left(x^{2}-2 x-1\right)\left(x^{2}-2 x-2\right)-2<0$
$\Rightarrow x^{4}-4 x^{3}+x^{2}+6 x<0$
$\Rightarrow x(x+1)(x-2)(x-3)<0$

$x \in(-1,0) \cup(2,3)$
70. Answer (4)

Hint: $\log _{b}{ }^{a}=\frac{\ln a}{\ln b}$

Sol. : (1) $\log _{5}(200)>3$
(2) $\frac{1}{\log _{5} 80}+\frac{2}{\log _{4} 80}=\log _{80} 5+2 \log _{80} 4$

$$
=\log _{80}(5 \times 16)=1
$$

(3) $\log _{2} 9>3$ and $\log _{3} 16<3$
(4) $\log _{3} 20+\log _{4} 20<\log _{2} 20$

$$
\begin{aligned}
& \Rightarrow \frac{\ln 20}{\ln 3}+\frac{\ln 20}{\ln 4}<\frac{\ln 20}{\ln 2} \\
& \Rightarrow \frac{1}{\ln 3}<\frac{1}{\ln 2}-\frac{1}{2 \ln 2} \\
& \Rightarrow \frac{1}{\ln 3}<\frac{1}{2 \ln 2} \\
& \Rightarrow \frac{1}{\ln 3}<\frac{1}{\ln 4}(\text { Incorrect })
\end{aligned}
$$

71. Answer (04)

Hint: $f(-x)=f(x)$
Sol. : $\therefore f(-1)=f(1)$ and $f(-2)=2$
So there will be atleast 4 elements in set B.

$$
B=\{f(0), f(-1), f(-2), f(-3)\}
$$

72. Answer (46)

Hint: Number of students reading atmost one newspaper $=70-n(A \cap B)-n(B \cap C)-$ $n(C \cap A)+2 n(A \cap B \cap C)$
Sol. : Number of students reading atleast two newspapers
$=n(A \cap B)+n(B \cap C)+n(C \cap A)=-$
2. $n(A \cap B \cap C)$
$=5+10+15-2^{3}=24$
So, number of students reading atmost one newspaper $=70-24=46$
73. Answer (04)

Hint: Use wavy curve to solve the inequations.
Sol. : $\frac{x+1}{(x-4)(x-9)^{2}} \geq 0$

$x \in(-\infty,-1] \cup(4,9) \cup(9, \infty)$
and $\frac{(x+1)^{2020}(x+3)^{6}(x-8)^{8}}{x(x-6)} \leq 0$

$x \in(0,6] \cup\{-3,-1,8\}$
So, $x \in(4,6) \cup\{-3,-1,8\}$
Integral values of x are $-3,-1,5$ and 8 .
74. Answer (10)

Hint: $\log _{10}\left(x^{1+\log _{10} x}\right)=2$ then put $\log _{10} x=t$
Sol. : $x^{1+\log _{10} x}=100$
$\Rightarrow \quad\left(1+\log _{10} x\right) \log _{10} x=2$
Put $\log _{10} x=t$
$\Rightarrow t^{2}+t-2=0$
$\Rightarrow t=1,-2$
$x=10^{1}, 10^{-2}$
Product of roots is $\frac{1}{10}$
75. Answer (04)

Hint: $n((A \times B) \cap(B \times A))=(n(A \cap B))^{2}$
Sol. : If $(x, y) \in(A \times B)$ and $(x, y) \in B \times A$
Then $\quad x \in A$ and $x \in B$ similarly

$$
Y \in A \text { and } y \in B
$$

So $\quad x, y \in A \cap B$
Number of ordered pairs common to $A \times B$ and $B \times A$ is $(n(A \cap B))^{2}$

TEST -1 - Code-D

Test Date : 06/10/2019

ANSWERS

PHYSICS

1. (3)
2. (4)
3. (2)
4. (1)
5. (1)
6. (2)
7. (3)
8. (4)
9. (4)
10. (3)
11. (2)
12. (2)
13. (3)
14. (3)
15. (2)
16. (1)
17. (4)
18. (1)
19. (1)
20. (4)
21. (16)
22. (55)
23. (46)
24. (21)
25. (50)

CHEMISTRY

26. (3)
27. (4)
28. (4)
29. (1)
30. (4)
31. (3)
32. (3)
33. (3)
34. (1)
35. (4)
36. (4)
37. (3)
38. (4)
39. (3)
40. (2)
41. (1)
42. (3)
43. (2)
44. (4)
45. (3)
46. (28)
47. (32)
48. (10)
49. (50)
50. (36)

MATHEMATICS

51. (4)
52. (2)
53. (3)
54. (2)
55. (4)
56. (2)
57. (3)
58. (2)
59. (1)
60. (4)
61. (2)
62. (2)
63. (4)
64. (3)
65. (4)
66. (1)
67. (4)
68. (1)
69. (3)
70. (1)
71. (04)
72. (10)
73. (04)
74. (46)
75. (04)

HINTS \& SOLUTIONS

PART - A (PHYSICS)

1. Answer (3)

Hint: Apply $s=u t+\frac{1}{2} a t^{2}$
Sol. : $\frac{1}{2} 2 \times 3^{2}+\left[6(t-3)-\frac{1}{2} 2 \times(t-3)^{2}\right]=0$

$$
\begin{aligned}
& \Rightarrow 18+12 t-36-2\left(t^{2}-6 t+9\right)=0 \\
& \Rightarrow 6 t-9-t^{2}+6 t-9=0 \\
& t^{2}-12 t-18=0 \\
& t=\frac{12 \pm \sqrt{144-72}}{2} \\
& \quad=\frac{12 \pm 6 \sqrt{2}}{2}=(6+3 \sqrt{2}) \mathrm{s}
\end{aligned}
$$

2. Answer (4)

Hint: $125=5 t^{2} \Rightarrow t=5 \mathrm{~s}$
Sol. : $S_{5 t h}=0+\frac{1}{2} 10[9]=45 \mathrm{~m}$

$$
S_{1 \mathrm{st}}=5 \mathrm{~m}
$$

3. Answer (2)

Hint: $\quad x_{P}=u t$
Sol. : $\quad x_{Q}=d+\frac{1}{2} a t^{2}$

$$
\begin{aligned}
& 0=\frac{1}{2} a \cdot 2 t-u \Rightarrow t=\frac{u}{a} \\
& \begin{aligned}
\left(x_{Q}-x_{P}\right)_{\min } & =d+\frac{1}{2} a \cdot \frac{u^{2}}{a^{2}}-\frac{u^{2}}{a} \\
& =d-\frac{u^{2}}{2 a}
\end{aligned}
\end{aligned}
$$

4. Answer (1)

Hint: For critical point $y^{\prime}=0$
$x=-3$ is point of maxima
Sol. : $\frac{d y}{d x}=6 x^{2}+6 x-36=0$
$\Rightarrow x^{2}+x-6=0$
$x=-3$ or $x=2$
$\frac{d^{2} y}{d x^{2}}=2 x+1$
$\Rightarrow \quad y$ has a maximum at $x=-3$
$\Rightarrow y_{\max }=-54+27+108+7=88$
5. Answer (1)

Hint: Particle is instantaneously at rest at $t=5 \mathrm{~s}$
Sol. : $\quad d_{1}=\left(10 \times 5-\frac{1}{2} 2 \times 5^{2}\right)-\left(10 \times 4-\frac{1}{2} 2 \times 4^{2}\right)$

$$
=(50-25)-(40-16)=1 \mathrm{~m}
$$

$$
d_{2}=\frac{1}{2} 2 \times 2^{2}=4 m
$$

$$
\Rightarrow \quad \text { Average speed }=\frac{5}{3} \mathrm{~m} / \mathrm{s}
$$

6. Answer (2)

Hint: $\int \frac{d x}{a x+b}=\frac{1}{a} \ln (a x+b)+c$
Sol. : $\quad I=\left.\frac{3}{3} \ln (3 x+4)\right|_{0} ^{2}=\ln \frac{10}{4}=\ln \frac{5}{2}$
7. Answer (3)

Hint: $\quad V^{2}=9 x$
Sol. : $2 V \frac{d V}{d t}=9 V \Rightarrow a=\frac{9}{2}$

$$
\begin{aligned}
& S=\frac{1}{2} \frac{9}{2} \cdot t^{2} \Rightarrow 16=9 t^{2} \\
& \Rightarrow \quad t=\frac{4}{3} \mathrm{~s} \\
& V_{\mathrm{av}}=\frac{4 \times 3}{4}=3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

8. Answer (4)

Hint: Total time of journey

$$
\begin{aligned}
& =2 \times 90=180 \text { minutes } \\
& =3 \mathrm{hr}
\end{aligned}
$$

Sol. : Speed of river $=\frac{12}{3}=4 \mathrm{~km} / \mathrm{h}$
9. Answer (4)

Hint: $\Delta V=$ Area under $v-t$ graph
Sol. : $\quad \Delta V=\frac{1}{2} \times 4 \times 5-\frac{1}{2} 2 \times \frac{5}{2}$

$$
\begin{aligned}
& =10-2.5=7.5 \mathrm{~m} / \mathrm{s} \\
V= & V_{i}+\Delta V=17.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

10. Answer (3)

Hint: $\quad x_{Q}-x_{P}=V t-\frac{1}{2} a t^{2}$
Sol. : Graph is a downward parabola which initially goes up and then down.
11. Answer (2)

Hint: $\quad H=u t-\frac{1}{2} g t^{2}$
Sol. : $\Rightarrow \frac{1}{2} g t^{2}-u t+H=0$

$$
t=\frac{u \pm \sqrt{u^{2}-2 g H}}{g}
$$

$$
\Rightarrow \quad t_{1}+t_{2}=\frac{2 u}{g}
$$

$$
\Rightarrow u=\frac{g\left(t_{1}+t_{2}\right)}{2}
$$

$$
0=u^{2}-2 g h_{\max }
$$

$$
\Rightarrow \quad h_{\max }=\frac{u^{2}}{2 g}=\frac{g\left(t_{1}+t_{2}\right)^{2}}{8}
$$

12. Answer (2)

Hint: $0=u-g t_{1} \Rightarrow t_{1}=\frac{u}{g}$
Sol. : $0=H+u t-\frac{1}{2} g t^{2}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{1}{2} g t^{2}-u t-H=0 \\
& t=\frac{u+\sqrt{u^{2}+4 H g / 2}}{g}=\frac{u+\sqrt{u^{2}+2 H g}}{g} \\
& \frac{u+\sqrt{u^{2}+2 H g}}{g}=3 \cdot \frac{u}{g} \\
& \Rightarrow u^{2}+2 H g=4 u^{2} \\
& \Rightarrow 2 H g=3 u^{2} \Rightarrow H=\frac{3 u^{2}}{2 g}
\end{aligned}
$$

13. Answer (3)

Hint: $\int_{u}^{u / 2} v^{-1 / 2} d v=\int_{0}^{t}-\left.k d t \Rightarrow 2 v^{1 / 2}\right|_{u} ^{\frac{u}{2}}=-k t$

$$
\Rightarrow 2\left[\sqrt{u}-\sqrt{\frac{u}{2}}\right]=k t
$$

Sol. : $t=\frac{2 \sqrt{u}}{k}\left[1-\frac{1}{\sqrt{2}}\right]=\frac{\sqrt{u}}{k}[2-\sqrt{2}]$
14. Answer (3)

Hint: Mean value

$$
\begin{aligned}
& =\frac{1.49+1.50+1.52+1.54+1.48}{5} \\
& =\frac{7.53}{5}=1.506=1.51 \mathrm{~cm}
\end{aligned}
$$

Sol. : Mean absolute error

$$
\begin{aligned}
& \quad=\frac{0.02+0.01+0.01+0.03+0.03}{5} \\
& \quad=\frac{0.1}{5}=0.02 \\
& \% \text { error }=\frac{0.02}{1.51} \times 100=1.3 \%
\end{aligned}
$$

15. Answer (2)

Hint: $\quad R_{P}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{3 \times 6}{9}=2 \Omega$

$$
R_{P}=2.0 \Omega
$$

Sol. : $\frac{\Delta R_{P}}{2^{2}}=\frac{0.1}{9}+\frac{0.2}{36}=\frac{0.4+0.2}{36}$

$$
\Delta R_{P}=\frac{0.6}{9}=0.067=0.1 \Omega
$$

16. Answer (1)

Hint: $A=16.6 \times 4.7=78.02 \mathrm{~cm}^{2}$
Sol. : There will be only two significant figures as 4.7 cm has only two significant figures.
17. Answer (4)

Hint: $\quad[\tau]=\left[\rho^{x} f^{y} v^{z}\right]=\mathrm{ML}^{2} \mathrm{~T}^{-2}$
Sol. : $\Rightarrow\left(\mathrm{ML}^{-3}\right)^{x}\left(\mathrm{~T}^{-1}\right)^{y}\left(\mathrm{LT}^{-1}\right)^{z}=\mathrm{ML}^{2} \mathrm{~T}^{-2}$

$$
\begin{aligned}
& \Rightarrow \quad x=1,-3 x+z=2 \Rightarrow z=2+3=5 \\
& -y-z=-2 \Rightarrow y=2-5=-3 \\
& \Rightarrow \quad[\tau]=\rho f^{-3} \nu^{5}
\end{aligned}
$$

18. Answer (1)

Hint: $\quad[a]=\left[\mathrm{LT}^{-2}\right]$
Sol. : $(c)=[a]^{1 / 2}=\left[L^{1 / 2} \mathrm{~T}^{-1}\right]$

$$
[b]=\frac{[\mathrm{L}][a]}{\mathrm{T}^{3}}=\left[\mathrm{L}^{2} \mathrm{~T}^{-5}\right]
$$

19. Answer (1)

Hint: $\quad a=12-3 t=\frac{d v}{d t}$
Sol. : $\int_{7}^{v} d v=\int_{1}^{5}(12-3 t) d t$

$$
\begin{aligned}
& \Rightarrow v-7=\left.\left(12 t-\frac{3 t^{2}}{2}\right)\right|_{1} ^{5}=12 \\
& \Rightarrow v=19 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

20. Answer (4)

Hint: $1 \mathrm{~N}=\frac{1 \mathrm{kgm}}{\mathrm{s}^{2}}$
Sol. : $\frac{1}{\alpha} \cdot \frac{1}{\beta}(\gamma)^{2}=\frac{\gamma^{2}}{\alpha \beta}$
21. Answer (16)

Hint: $A=\int_{x_{1}}^{x_{2}} y d x$

Sol. : $\quad A=24-\int_{0}^{2} 3 x^{2} d x=24-8=16$
22. Answer (55)

Hint: $\quad S_{n \text { nh }}=u+\frac{1}{2} a(2 n-1)$
Sol. : $S_{4 \text { th }}=u-5(7)=u-35$
$S_{5 \text { th }}=u-5 \times 9=u-45$
$u-35=2(u-45)$
$\Rightarrow u=90-35=55 \mathrm{~m} / \mathrm{s}$
23. Answer (46)

Hint: $\quad x_{5 \mathrm{~s}}=\frac{1}{2} 2 \times 5^{2}=25 \mathrm{~m}, \quad V_{5 \mathrm{~s}}=10 \mathrm{~m} / \mathrm{s}$
Sol. : $x_{8 \mathrm{~s}}=25+10 \times 3-\frac{1}{2} 2 \times 3^{2}=46 \mathrm{~m}$
24. Answer (21)

Hint: $\frac{d v}{d t}=(2 t+4) \Rightarrow \int_{0}^{v} d v=\int_{0}^{3}(2 t+4) d t$
Sol. : $V=\left.\left(\frac{2 t^{2}}{2}+4 t\right)\right|_{0} ^{3}=9+12=21 \mathrm{~m} / \mathrm{s}$
25. Answer (50)

Hint: $v=-\frac{5}{2} x+5$
Sol. : $a=\frac{d v}{d t}=-\frac{5}{2} v=\frac{-5}{2}\left(\frac{-5}{2} x+5\right)$
$=\frac{25 x}{4}-\frac{25}{2}$
$a(x=1 \mathrm{~m})=\frac{-25}{4} \mathrm{~m} / \mathrm{s}^{2}$

PART - B (CHEMISTRY)

26. Answer (3)

Hint: M. moles of $\mathrm{H}^{+}=40 \times 0.2+60 \times 0.1 \times 2$

$$
=20 \mathrm{~m} . \text { moles }
$$

M. moles of $\mathrm{OH}^{-}=150 \times 0.1=15 \mathrm{~m}$ moles

Sol. : Volume of final solution $=250 \mathrm{~mL}$

$$
\therefore\left[\mathrm{H}^{+}\right]=\frac{5}{250}=0.02 \mathrm{M}
$$

27. Answer (4)

Hint: 2 moles of KMnO_{4} reacts with 5 moles of $\mathrm{H}_{2} \mathrm{O}$.
Sol. : m . moles of KMnO_{4} reacted

$$
\begin{aligned}
& =50 \times 0.12 \\
& =6 \mathrm{~m} \cdot \mathrm{moles}
\end{aligned}
$$

Moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ reacted
$=6 \times 2.5$
$=15 \mathrm{~m}$ moles
\therefore Molarity of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution

$$
\begin{aligned}
&=\frac{15}{20}=0.75 \\
&= 0.75 \mathrm{~mol} / \mathrm{L} \\
& \therefore \quad \% \mathrm{~W} / \mathrm{V}=\frac{0.75 \times 34}{10} \\
&=2.55 \mathrm{~g} / \mathrm{Ml}
\end{aligned}
$$

28. Answer (4)

Hint: Moles of $\mathrm{KIO}_{3}=\frac{64.2}{214}=0.3$ moles
Moles of KI $=\frac{83}{166}=0.5$ moles
Moles of $\mathrm{HCl}=\frac{43.8}{36.5}=1.2$ moles
Sol. : HCl will act as limiting reagent.
\therefore Moles of ICI formed $=\frac{1.2}{2}=0.6$ moles
Moles of KCl formed $=\frac{1.2}{2}=0.6$ moles
Moles of $\mathrm{H}_{2} \mathrm{O}$ formed $=\frac{1.2}{2}=0.6$ moles
\therefore Total moles of products formed $=1.8$ moles
29. Answer (1)

Hint: Reactant B will act as limiting reagent.
Sol. :

$$
2 A+3 B \rightarrow C
$$

Initial moles

$$
6 \quad 8
$$

(L.R)
$\therefore \quad$ Moles of C formed $=\frac{8}{3}=2.67$ moles
30. Answer (4)

Hint: Correct order of ionisation energy :

$$
\mathrm{B}>\mathrm{Tl}>\mathrm{Ga}>\mathrm{Al}>\mathrm{In}
$$

Sol. : Screening effect follows the order : $s>p$ $>d>f$
Atomic radius: $\mathrm{B}<\mathrm{Ga}<\mathrm{Al}<\mathrm{In}<\mathrm{Tl}$
lonic size: $\mathrm{Mg}^{2+}<\mathrm{Na}^{+}<\mathrm{F}^{-}<\mathrm{O}^{2-}$
31. Answer (3)

Hint: Due to ns^{2} configuration of Mg , addition of electron will lead to absorption of energy.
Sol. : Addition of electron to Na, Al and F leads to release of energy.
32. Answer (3)

Hint: For any element: $\mathrm{IE}_{1}<\mathrm{IE}_{2}$ (always)
Sol. : In periodic table He has highest ionisation energy.
Due to half filled electronic configuration IE of $n s^{2} n p^{3}$ is more than that of $n s^{2} n p^{2}$ and $n s^{2} n p^{4}$ outer electronic configuration.
33. Answer (3)

Hint: Mg^{2+} and Al^{3+} have same number of electrons.
Sol. : Size of given species follows the order $\mathrm{Mg}>\mathrm{Al}>\mathrm{Mg}^{2+}>\mathrm{Al}^{3+}$
34. Answer (1)

Hint\& Sol. :
The given graph is for atomic radius (regular increase)
35. Answer (4)

Hint: s-block and p-block elements are called representative elements.
Sol. : Outer electronic configuration of f-block elements is $(n-2) f^{1-14}(n-1) d^{0-1} n s^{2}$
Metallic character and reactivity increase down the group among s-block elements, and due to high reactivity they are never found in pure form in nature.
36. Answer (4)

Hint: Successive ionisation energy of any element always increases.
Sol. : The largest jump in I.E. is from I.E. 2 to I.E. 3
\therefore Most probable outermost electronic configuration is ns^{2}.
37. Answer (3)

Hint: Radial nodes of an orbital has spherical shape.
Sol. : Number of radial nodes of an orbital $=n-\ell-1$
38. Answer (4)

Hint: Cathode rays particles are electrons while anode rays particles are positively charged ions.
Sol. : Anode rays particles can carry a integral multiple of the fundamental unit of electric charge.
39. Answer (3)

Hint: The removed electron belongs to outermost orbital i.e., 4s
Sol. : Possible quantum numbers for 3d orbital electron is $\left(3,2,0, \frac{1}{2}\right)$

Possible quantum numbers for 4 s orbital electron is $\left(4,0,0, \frac{1}{2}\right)$
40. Answer (2)

Hint: According to Bohr's model,
Angular momentum of an electron \propto orbit number.

Sol. : $A \cdot M=m v r=\frac{n h}{2 \pi}$
$\therefore \quad \frac{(\mathrm{A} \cdot \mathrm{M})_{4, \mathrm{He}^{+}}}{(\mathrm{A} \cdot \mathrm{M})_{2, \mathrm{Be}^{3+}}}=\frac{4}{2}=2$
41. Answer (1)

Hint: For photoelectric effect to occur, the energy of incident photon should be more than work function of metal.
Sol. : Energy of incident photon

$$
\begin{aligned}
& =\frac{\mathrm{hc}}{\lambda} \\
& \approx \frac{1240}{310} \mathrm{eV}=4 \mathrm{eV}
\end{aligned}
$$

\therefore Photoelectric effect is possible for metal A only.
42. Answer (3)

Hint: Iso-electronic species have same number of electrons.
Sol.: He^{+}and Li^{++}have one electron each while H^{+}has zero electron.

43. Answer (2)

Hint: Transition takes from $4^{\text {th }}$ excited state i.e., $5^{\text {th }}$ energy level.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Sol. : Total number of different photons emitted $=10$

Out of 10 different photons, 4 belong to ultraviolet region.
3 each to the visible and infrared region.
Minimum wavelength photon or maximum energy photon belongs to ultraviolet region ($5 \rightarrow 1$ transition)
44. Answer (4)

Hint: In case of unielectronic species, energy of orbitals depends on n.
Sol.: For unielectronic species, higher the value of n , higher will be the energy level of orbital.
\therefore Order of energy is: $\mathrm{I}<\mathrm{II}=\mathrm{III}<$ IV

45. Answer (3)

Hint: If a charged particle having charge qC is accelerated through a P.D. of V volts, its K.E. increase by $q V J$.

Sol. : de Broglie wavelength is given as:

$$
\begin{aligned}
\lambda & =\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}(\mathrm{K.E.})}} \\
\therefore \frac{\lambda_{\alpha}}{\lambda_{\mathrm{p}}} & =\sqrt{\frac{2 \mathrm{~m}_{\mathrm{p}} \cdot \mathrm{q}_{\mathrm{p}} \cdot 2 \mathrm{~V}}{2 \mathrm{~m}_{\alpha} \cdot \mathrm{q}_{\alpha} \mathrm{V}}}\left[\mathrm{~m}_{\alpha}=4 \mathrm{~m}_{\mathrm{p}} \text { and } \mathrm{q}_{\alpha}=2 \mathrm{q}_{\mathrm{p}}\right] \\
& =\sqrt{\frac{2 \times 2}{2 \times 4 \times 2}}=\frac{1}{2}
\end{aligned}
$$

46. Answer (28)

Hint: Avg. mol. mass of air $=0.2 \times 32+0.8 \times 28$

$$
=28.8 \mathrm{~g} / \mathrm{mol}
$$

$\therefore \quad$ Moles of $\mathrm{N}_{2}=\frac{14.4}{28.8} \times 0.8$

$$
=0.4 \mathrm{~mol}
$$

Sol. : For given reaction N_{2} will be the limiting reagent.
\therefore Moles of $\mathrm{Li}_{3} \mathrm{~N}$ formed $=0.8$
$\therefore \quad$ Amount of $\mathrm{Li}_{3} \mathrm{~N}$ formed $=35 \times 0.8$

$$
=28 \mathrm{~g}
$$

47. Answer (32)

Hint: \% of $C=37.5$
$\%$ of $\mathrm{H}=12.5$
$\%$ of $\mathrm{O}=50$

Sol. :

:	C	H	O
$\%$	37.5	12.5	50
moles	$\frac{37.5}{12}=3.125$	$\frac{12.5}{1}=12.5$	$\frac{50}{16}=3.125$
ratio	$\frac{3.125}{3.125}=1$	$\frac{12.5}{3.125}=4$	$\frac{3.125}{3.125}=1$

\therefore Empirical formula $=\mathrm{CH}_{4} \mathrm{O}$
Empirical formula mass $=32$
48. Answer (10)

Hint: During formation of cation, electrons are removed from outermost orbits first.
Sol. : Ground state electronic configuration of Fe^{3+} is

$$
\begin{array}{cccccc}
1 s^{2} & 2 s^{2} & 2 p^{6} & 3 s^{2} & 3 p^{6} & 3 d^{5} \\
\left.\mathrm{n}+\mathrm{l}=\begin{array}{rrrrr}
1 & 2 & 3 & 3 & 4
\end{array}\right)
\end{array}
$$

$\therefore \quad$ Number of electrons having $\mathrm{s}=-\frac{1}{2}$

$$
\begin{aligned}
& =1+3+1+5 \\
& =10
\end{aligned}
$$

49. Answer (50)

Hint: Moles of Fe^{3+} reacted $=2 \times$ moles of $\mathrm{NH}_{2} \mathrm{OH}$ (from $1^{\text {st }}$ reaction)
Sol. : From reaction $1^{\text {st }}$
Moles of $\mathrm{NH}_{2} \mathrm{OH}=\frac{1}{2} \times$ moles of Fe^{3+} reacted in 50 mL solution

$$
=5 \times 10^{-3} \text { moles }
$$

$\therefore \quad$ Moles of $\mathrm{NH}_{2} \mathrm{OH}$ in 10 ml original sample $=5 \times 10^{-3} \mathrm{moles}$
$\therefore \quad$ Molarity $=\frac{5 \times 10^{-3}}{10 \times 10^{-3}}=0.5 \mathrm{M}$
50. Answer (36)

Hint: At STP 1 mole of any gas occupy 22.4 L .

Sol. : Volume of $\mathrm{H}_{2}(\mathrm{~g})$ produced $=\frac{3.136}{22.4}$

$$
=0.14
$$

Assume mass of Al in 3 g sample $=\mathrm{x}$
$\therefore \quad \frac{3}{2} \cdot \frac{x}{27}+\frac{3-x}{24}=0.14$
$\Rightarrow \frac{3 x}{54}+\frac{3-x}{24}=0.14$
$\Rightarrow 72 \mathrm{x}+162-54 \mathrm{x}=0.14 \times 54 \times 24$
$\Rightarrow \mathrm{x}=1.08 \mathrm{~g}$
$\therefore \quad \%$ of Al in alloy $=\frac{1.08}{3} \times 100=36 \%$

PART - C (MATHEMATICS)

51. Answer (4)

Hint: $\log _{b}{ }^{a}=\frac{\ln a}{\ln b}$
Sol. : (1) $\log _{5}(200)>3$
(2) $\frac{1}{\log _{5} 80}+\frac{2}{\log _{4} 80}=\log _{80} 5+2 \log _{80} 4$ $=\log _{80}(5 \times 16)=1$
(3) $\log _{2} 9>3$ and $\log _{3} 16<3$
(4) $\log _{3} 20+\log _{4} 20<\log _{2} 20$

$$
\begin{aligned}
& \Rightarrow \frac{\ln 20}{\ln 3}+\frac{\ln 20}{\ln 4}<\frac{\ln 20}{\ln 2} \\
& \Rightarrow \frac{1}{\ln 3}<\frac{1}{\ln 2}-\frac{1}{2 \ln 2} \\
& \Rightarrow \frac{1}{\ln 3}<\frac{1}{2 \ln 2} \\
& \Rightarrow \frac{1}{\ln 3}<\frac{1}{\ln 4} \text { (Incorrect) }
\end{aligned}
$$

52. Answer (2)

Hint: Use wavy curve method
Sol. : $\left(x^{2}-2 x-1\right)\left(x^{2}-2 x-2\right)-2<0$
$\Rightarrow x^{4}-4 x^{3}+x^{2}+6 x<0$
$\Rightarrow x(x+1)(x-2)(x-3)<0$

$x \in(-1,0) \cup(2,3)$
53. Answer (3)

Hint: Draw the graphs of $y=|x+2|$ and $y=-\sqrt{4-x^{2}}$
Sol. : $x=-2$ is the only solution

54. Answer (2)

Hint: $R=\{(4,2)\}$
Sol. : If $\frac{x}{y}$ is a prime number then only possible values of (x, y) is $(4,2)$.
55. Answer (4)

Hint: $\quad f(x)+f(1-x)=\frac{1}{3}$
Sol. : $f(1-x)=\frac{3^{1-2 x}}{9^{1-x}+3}=\frac{3}{9+3.9^{x}}=\frac{1}{9^{x}+3}$
$\Rightarrow f(x)+f(1-x)=\frac{3^{2 x-1}+1}{9^{x}+3}=\frac{1}{3}$
So, $f\left(\frac{1}{2017}\right)+f\left(\frac{2016}{2017}\right)=\frac{1}{3}$
$=f\left(\frac{2}{2017}\right)+f\left(\frac{2015}{2017}\right)$ and so on.
Then, $\sum_{r=1}^{2016} f\left(\frac{r}{2017}\right)=\frac{1}{3}\left(\frac{2016}{2}\right)=336$
56. Answer (2)

Hint: As $x>0$, so the given equation

$$
\log _{e} x=\frac{1}{x+1}
$$

Sol. :

57. Answer (3)

Hint: $||x|-1|=\frac{1}{x^{2}}$, then solve graphically.
Sol. :

$y=||x|-1|$ and $y=\frac{1}{x^{2}}$
Number of solutions $=2$
58. Answer (2)

Hint: $a^{\log _{b}^{c}}=c^{\log _{b}^{a}}$
Sol. : $\quad 4^{\log _{2}(x+4)}=(\sqrt{5}-1)^{\log _{(6-2 \sqrt{5})^{81}}}$

$$
\begin{aligned}
& \Rightarrow(x+4)^{\log _{2}^{4}}=81 \log _{(\sqrt{5}-1)^{2}}(\sqrt{5}-1) \\
& \Rightarrow(x+4)^{2}=81^{\frac{1}{2}} \\
& \Rightarrow x+4=3 \text { or } x+4=-3 \\
& \Rightarrow x=-1 \text { or }-7 \\
& \text { But } x=-7 \text { is not in domain }
\end{aligned}
$$

59. Answer (1)

Hint: Transformation of graphs.
Sol. : $y=f(-x)$

Now, $y=f(-|x|)$

60. Answer (4)

Hint: Factorise $x^{2}+2 x-3$
Sol. : $y=\frac{x^{2}+2 x-3}{x^{2}-1}$

$$
\begin{aligned}
& =\frac{(x-1)(x+3)}{(x-1)(x+1)} \\
& y=\frac{x+3}{x+1},(x \neq 1) \\
& x=\frac{3-y}{y-1} \\
& \therefore \quad y \neq 1,2 \\
& y \in R-\{1,2\}
\end{aligned}
$$

61. Answer (2)

Hint: $\quad \frac{x-3}{2} \leq \frac{1}{2} \cap x>3$
Sol. : Domain of $\log _{\frac{1}{2}}\left(\frac{x-3}{2}\right)$ is $\frac{x-3}{2}>0$

$$
\Rightarrow \quad x \in(3, \infty)
$$

and, $\log _{\frac{1}{2}}\left(\frac{x-3}{2}\right) \geq 1 \Rightarrow \frac{x-3}{2} \leq \frac{1}{2} \Rightarrow x \leq 4$ $x \in(3,4]$
62. Answer (2)

Hint: $\ln 3=\frac{\ln 2}{x}, \ln =y \ln 2$ and $\ln 5=\frac{\ln 2}{z x}$
Sol. : $\because x=\log _{3}^{2} \Rightarrow \frac{\ln 2}{\ln 3}=x \Rightarrow \ln 3=\frac{\ln 2}{x}$
Similarly, $\ln =y \ln 2$ and $\ln 5=\frac{\ln 3}{z}=\frac{\ln 2}{z x}$
Now, $\log _{42} 70=\frac{\ln 70}{\ln 42}=\frac{\ln 2+\ln 5+\ln 7}{\ln 2+\ln 3+\ln 7}$
$=\frac{\ln 2+\frac{\ln 2}{z x}+y \ln 2}{\ln 2+\frac{\ln 2}{x}+y \ln 2}$
$=\frac{1+\frac{1}{z x}+y}{1+\frac{1}{x}+y}$
$=\frac{x y z+z x+1}{z(x+y x+1)}$

$$
=\frac{x y z+z x+1}{x y z+z x+z}
$$

63. Answer (4)

Hint: $\quad 4^{\log _{2} 3}=3^{\log _{2} 4}=9$
Sol. : $\log _{\frac{1}{3}}\left(\frac{\sqrt{3^{6} \cdot \sqrt[3]{3^{-2} \cdot 3^{-4}}}}{3^{\log _{2} 4}}\right)=\log _{\frac{1}{3}}\left(\frac{3^{2}}{3^{2}}\right)=0$
64. Answer (3)

Hint: Use Venn-diagram
Sol. :

$(A \cup B \cup C) \cap B^{\prime}=(A \cup C)-B$
65. Answer (4)

Hint: See Venn-diagram
Sol.: The shaded region contains those elements of universal set which are available in set B but not available in either set A or set C, that is $B-(A \cup C)$
66. Answer (1)

Hint: $n(A \Delta B)=n(A \cup B)-n(A \cap B)$
Sol. : $\because n(A-B)=n(A)-n(A \cap B)$

$$
\begin{aligned}
n(A \cap B) & =115-60=55 \\
\because n(A \Delta B) & =n(A \cup B)-n(A \cap B) \\
& =200-55=145
\end{aligned}
$$

67. Answer (4)

Hint: $2-x<0 \cap x^{2}+7 x+12 \neq 0$
Sol. : $f(x)=\frac{\log _{3}(2-x)}{x^{2}+7 x+12}$
$2-x>0 \cap x^{2}+7 x+12 \neq 0$
$\Rightarrow x<2 \cap x \neq-3,-4$
$\Rightarrow x \in(-\infty, 2)-\{-3,-4\}$
68. Answer (1)

Hint: $\quad 3^{\left(4 \log _{9} 5\right)-1}=\frac{1}{3}\left[3^{2 \log _{3} 5}\right]$
Sol. : $3^{\left(4 \log _{9} 5\right)-1}=\frac{1}{3}\left[3^{2 \log _{3} 5}\right]$

$$
\begin{aligned}
& =\frac{1}{3} \cdot 3^{\log _{3} 5^{2}} \\
& =\frac{25}{3}
\end{aligned}
$$

69. Answer (3)

Hint: Total number of relations from A to $B=$ $2^{n(A) \cdot n(B)}$

Sol. : Total number of relations from A to $B=$ $2^{n(A) \cdot n(B)}$
$n(P(\phi))=1$ and $n(P(P(\phi)))=2$
So total number of relations $=2^{1 \times 2}=4$
70. Answer (1)

Hint: $\frac{3^{x}-2^{x}}{x} \geq 0$
Sol.: $f(x)=\sqrt{\frac{3^{x}-2^{x}}{x}}$
$\frac{3^{x}-2^{x}}{x} \geq 0$
If $x>0$ then $3^{x}-2^{x} \geq 0 \Rightarrow x \in(0, \infty)$
If $x<0$ then $3^{x}-2^{x} \leq 0 \Rightarrow x \in(-\infty, 0)$
Domain of $f(x)$ is $(-\infty, \infty)-\{0\}$
71. Answer (04)

Hint: $\quad n((A \times B) \cap(B \times A))=(n(A \cap B))^{2}$
Sol. : If $(x, y) \in(A \times B)$ and $(x, y) \in B \times A$
Then $\quad x \in A$ and $x \in B$ similarly $Y \in A$ and $y \in B$
So $\quad x, y \in A \cap B$
Number of ordered pairs common to $A \times B$ and $B \times A$ is $(n(A \cap B))^{2}$
72. Answer (10)

Hint: $\log _{10}\left(x^{1+\log _{10} x}\right)=2$ then put $\log _{10} x=t$
Sol. : $\quad x^{1+\log _{10} x}=100$
$\Rightarrow\left(1+\log _{10} x\right) \log _{10} x=2$
Put $\log _{10} x=t$
$\Rightarrow t^{2}+t-2=0$
$\Rightarrow t=1,-2$

$$
x=10^{1}, 10^{-2}
$$

Product of roots is $\frac{1}{10}$
73. Answer (04)

Hint: Use wavy curve to solve the inequations.
Sol. : $\frac{x+1}{(x-4)(x-9)^{2}} \geq 0$

$x \in(-\infty,-1] \cup(4,9) \cup(9, \infty)$
and $\frac{(x+1)^{2020}(x+3)^{6}(x-8)^{8}}{x(x-6)} \leq 0$

$x \in(0,6] \cup\{-3,-1,8\}$
So, $x \in(4,6) \cup\{-3,-1,8\}$
Integral values of x are $-3,-1,5$ and 8 .
74. Answer (46)

Hint: Number of students reading atmost one newspaper $=70-n(A \cap B)-n(B \cap C)-$ $n(C \cap A)+2 n(A \cap B \cap C)$
Sol. : Number of students reading atleast two newspapers

$$
\begin{aligned}
& =n(A \cap B)+n(B \cap C)+n(C \cap A) \\
& =-2 . n(A \cap B \cap C) \\
& =5+10+15-2^{3}=24
\end{aligned}
$$

So, number of students reading atmost one newspaper $=70-24=46$
75. Answer (04)

Hint: $\quad f(-x)=f(x)$
Sol. : $\therefore f(-1)=f(1)$ and $f(-2)=2$
So there will be atleast 4 elements in set B.
$B=\{f(0), f(-1), f(-2), f(-3)\}$

