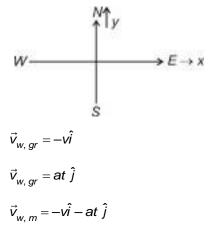
All India Aakash Test Series for JEE (Main)-2021

TEST-2 - Code-C

Test Date : 10/11/2019

ANSWERS					
PHY	SICS	CHEM	ISTRY	MATH	EMATICS
1.	(2)	26.	(2)	51.	(2)
2.	(1)	27.	(1)	52.	(1)
3.	(1)	28.	(3)	53.	(1)
4.	(4)	29.	(1)	54.	(4)
5.	(1)	30.	(3)	55.	(2)
6.	(2)	31.	(4)	56.	(2)
7.	(3)	32.	(1)	57.	(1)
8.	(2)	33.	(1)	58.	(3)
9.	(4)	34.	(1)	59.	(3)
10.	(3)	35.	(2)	60.	(3)
11.	(2)	36.	(3)	61.	(4)
12.	(1)	37.	(2)	62.	(3)
13.	(2)	38.	(4)	63.	(4)
14.	(1)	39.	(2)	64.	(2)
15.	(4)	40.	(2)	65.	(1)
16.	(4)	41.	(2)	66.	(3)
17.	(3)	42.	(2)	67.	(1)
18.	(4)	43.	(3)	68.	(2)
19.	(3)	44.	(3)	69.	(1)
20.	(2)	45.	(3)	70.	(3)
21.	(60)	46.	(38)	71.	(27)
22.	(45)	47.	(64)	72.	(08)
23.	(10)	48.	(20)	73.	(20)
24.	(18)	49.	(20)	74.	(05)
25.	(50)	50.	(14)	75.	(05)

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

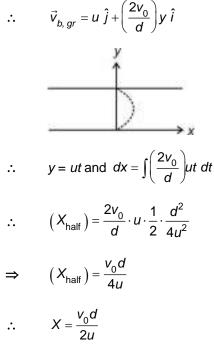

HINTS & SOLUTIONS

PART - A (PHYSICS)

- 1. Answer (2)
 - **Hint**: $V_{APP} = v v \cos\left(\frac{\pi}{6}\right)$
 - **Sol.**: Velocity of approach $v v \cos\left(\frac{\pi}{6}\right)$
 - $V_{\text{APP}} = v \left(1 \frac{\sqrt{3}}{2} \right)$ \Rightarrow
 - \therefore $T = \frac{2a}{v(2-\sqrt{3})}$
 - distance travelled $s = vT = \frac{2a}{2-\sqrt{3}}$ ÷.
- 2. Answer (1)

Hint : $\vec{v}_{w,m} = \vec{v}_{w,ar} - \vec{v}_{w,ar}$

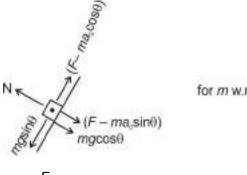
Sol.:


to man the direction of wind become south-west then $|\vec{v}| = |\vec{a}|t \implies t = \frac{|\vec{v}|}{|\vec{a}|}$

3. Answer (1)

Hint :
$$\vec{v}_{b, gr} = u \hat{j} + \left(\frac{2v_0}{d}\right)y \hat{i}$$
 (upto half width)

Total drift will be double of the drift upto half width.


Sol.: Velocity profile of river is as shown in figure.

4. Answer (4)

Hint : $a_0 = \frac{F}{M+m}$ forces on *m* with respect to M along the plane must be zero.

Sol.:

for mw.r.t. M

 $=\frac{F}{M+m}$ $mg\sin\theta = (F - ma_0)\cos\theta$ \Rightarrow \Rightarrow mg tan $\theta = F - \frac{mF}{M+m}$

$$\Rightarrow \qquad mg \tan \theta = \frac{FM}{M+m}$$

$$\Rightarrow \qquad F = \frac{(M+m)}{M} mg \tan \theta$$

Test - 2 (Code-C) (Hints & Solutions) 5. Answer (1) **Hint :** Constraints motion $a_m = 5a_M$ **Sol.** : For (*m*) (U.a.) ₩ ma $mg - T = ma_1$...(i) *.*.. (lla,) For (M) $5T - Mg = Ma_2$...(ii) \Rightarrow $a_1 = 5a_2$ $mg = m(5a_2) + T$ \Rightarrow ...(iii) 6. Answer (2) Hint: Total driving force must be able to overcome the maximum resistive force. Sol.: ******* 11111111111 n $\mu \frac{m}{l} \left(l - \frac{l}{n} \right) g = \left(\frac{m}{l} \right) \frac{l}{n} \cdot g$ $\frac{\mu}{l} \left| \frac{n-1}{n} \right| l = \frac{1}{n}$ \Rightarrow

$$\Rightarrow \qquad \mu = \frac{1}{n-1}$$

7. Answer (3)

Hint : Same range at $\theta = \theta$ and $90 - \theta$ **Sol.** : Same range at θ and $90 - \theta$

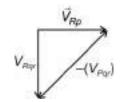
$$\therefore \qquad R = \frac{2u^2 \sin \theta \cdot \cos \theta}{g}$$

$$\therefore \qquad T_1 = \frac{2u \sin \theta}{g} \quad \text{and} \quad T_2 = \frac{2u \cos \theta}{g}$$

$$\therefore \qquad T_1 T_2 = \frac{4u^2 \sin \theta \cos \theta}{g^2} = \frac{2}{g} \left(\frac{u^2 \sin^2 \theta}{g} \right)$$

$$\Rightarrow \qquad T_1 T_2 = \frac{2R}{g}$$

$$\Rightarrow \qquad T_1 T_2 \propto R$$


All India Aakash Test Series for JEE (Main)-2021

8. Answer (2)

...

Hint : $\vec{V}_{Rp} = \vec{V}_{Rqr} - \vec{V}_{Pqr}$

Sol.:
$$\vec{V}_{Rp} = \vec{V}_{Rqr} + \vec{V}_{Qrp}$$
: $\vec{V}_{Rqr} - \vec{V}_{Pqr}$

- 9. Answer (4)
 - **Hint :** When speed of *A* and *C* are same along respective shown direction. Then block *B* comes to rest.

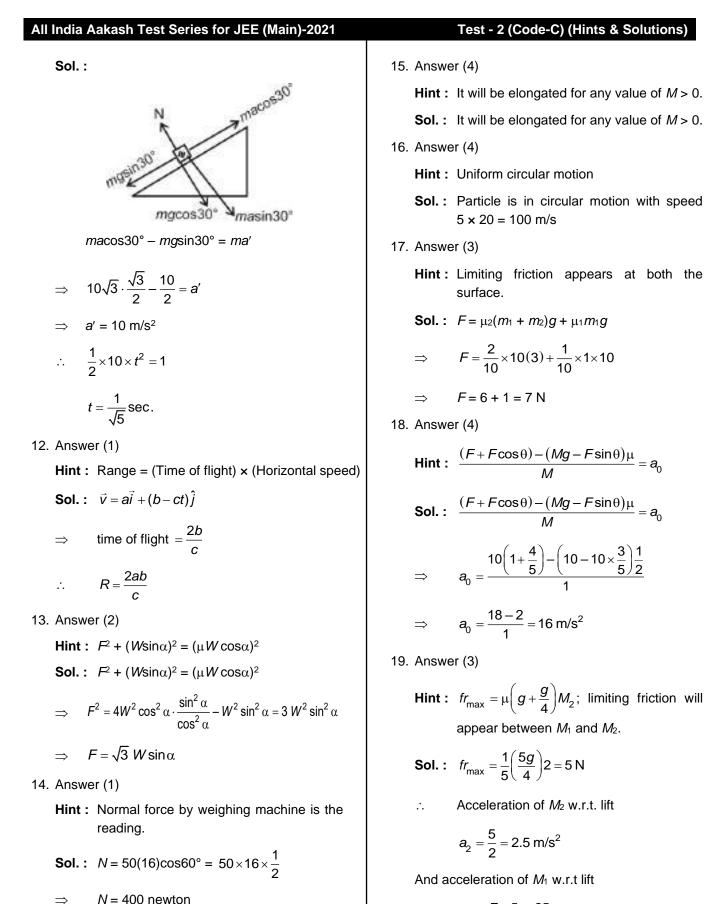
Sol.:
$$v_C = 3t$$
 and $\frac{dv_A}{dt} = 12t$
 $\therefore \quad v_A = 6t^2$
So $v_A = v_C$
 $\Rightarrow \quad t = \frac{1}{2}$

10. Answer (3)

- **Hint :** W.r.t. ground m_1 should have zero acceleration.
- **Sol.**: Let *M* moves with *a*₀ acceleration.

Then FBD of m_1 and m_2 w.r.t pulley.

For
$$(m_1)$$
: $\prod_{m,g}^{T} m_{i}a_{i} \Rightarrow T + m_{i}a_{0} - m_{i}g = m_{i}a_{0}$


$$\Rightarrow T = g$$

For (*M*₂):
$$\begin{array}{c} & & \\ & &$$

For (*M*)
$$\Rightarrow \frac{2T}{M} = a_0 \Rightarrow 2g = \frac{Mg}{4} \Rightarrow M = 8 \text{ kg}$$

11. Answer (2)

Hint : Find the acceleration of block w.r.t. wedge along the inclined plane.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

 $a_2 = \frac{F-5}{8} = \frac{25}{8} \text{ m/s}^2$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

...

Reading = 40 kg.

Test - 2 (Code-C) (Hints & Solutions) 20. Answer (2) **Hint :** $\frac{dv}{dt} = -\frac{\mu mg}{m} = -\mu g$ **Sol.**: $\frac{dv}{dt} = -\mu g$

- From figure: $-\mu g = -\frac{8}{4}$
- \Rightarrow $\mu g = 2$
- $\mu = 0.2$ \Rightarrow
- 21. Answer (60)
 - Hint: Limiting friction at the contact of C and ground is minimum.
 - **Sol.**: $fr_{max}(AB) = 90 \text{ N}$
 - $fr_{max}(BC) = 80 \text{ N};$

$$fr_{max}(C.ground) = 60 \text{ N}$$

So, motion starts at the interface of ground and block C. And all the blocks will move together at applied force of 60 N.

22. Answer (45)

Hint: $R = \frac{4^2 \sin 2\theta}{\alpha}$ **Sol.**: $R = \frac{4^2 \cdot \sin 2\theta}{q} = 30$ $\sin 2\theta = \frac{30 \times 10}{100 \times 100} = \frac{3}{100}$... $\theta \approx 0.86^{\circ}$ $\tan \theta = \frac{y}{30 \text{ m}} = y = 30 \times 100 \times \tan \theta$ *:*.. y = 45 cm \Rightarrow Hint: $R_{\max} = \frac{u^2}{q(1+\sin\theta)}$ **Sol.**: $u^2 = R_{max} \cdot g(1 + \sin\theta)$ $\Rightarrow u^2 = 5 \times 10 \times \left(1 + \frac{4}{5}\right)$

23. Answer (10)

$\Rightarrow u^2 = 5 \times 10 \times \frac{9}{5}$ $u = 3\sqrt{10} \text{ m/s}$ \Rightarrow

All India Aakash Test Series for JEE (Main)-2021

24. Answer (18)

Hint : Collision time
$$T = \frac{40}{m}$$

Sol. : Time of collision $T = \frac{40}{24}$ sec

$$\Rightarrow$$
 $T = \frac{5}{3} \sec$

$$\Rightarrow V_B = \frac{30 \times 3}{5} = 18 \text{ m/s}$$

Hint:
$$T = \frac{mv^2}{R}$$

Sol.: $T = \frac{mv^2}{R}$
$$= \frac{2 \times (5)^2}{1}$$

PART - B (CHEMISTRY)

26. Answer (2)

Hint : Lattice formation between gaseous cation and anion are energy releasing process, CI has -ve E.G.E.

Sol.:
$$\underset{(g)}{Cl+e^-} \xrightarrow{Cl^-} \underset{(g)}{electron gain enthalpy}$$

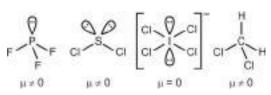
$$\underset{(g)}{\overset{+}{Na}} + \underset{(g)}{Cl^{-}} \underset{(s)}{\longrightarrow} \underset{(s)}{NaCl} \text{ lattice energy.}$$

27. Answer (1)

Hint : Lattice energy ∞ charge density on ions.

Sol.: Order for magnitude of lattice energy should be

$$MgO > MgF_2 > LiF > NaCl > Kl$$


- 28. Answer (3)
 - Hint : In a covalent bond, the two electrons are placed in between the nuclei of both the atoms.
 - Sol.: Both the electrons are under the influence of both nuclear charges.

29. Answer (1)

- Hint : Consider the dipole moment of the respective molecule.
- **Sol.**: In CI F molecule, fluorine is more electronegative

- $\therefore \quad \text{correct orientation is } \begin{cases} F CI \\ F CI \end{cases}$
- 30. Answer (3)
 - **Hint :** For non-polar molecule, dipole moment $\mu = 0$.

Sol.:

31. Answer (4)

- **Hint :** As the number of unpaired electrons increases, magnetic moment increases.
- Sol.: C2 Diamagnetic

C₂⁻ - Paramagnetic

All other processes will result into decrease in magnetic moment.

- 32. Answer (1)
 - Hint : Characteristic of an hybrid orbital depends upon the % of s-character.
 - Sol.: \because The s-orbitals are spherical, lower in

energy and close to the nucleus, its % increase in hybrid orbital cause bulkiness and shortening of the orbital.

33. Answer (1)

- **Hint :** p_x , p_y and p_z orbitals are required to form tetrahedral geometry along with *s*-orbitals.
- **Sol. :** ns orbital can combine with np orbitals as they are close in energy.

34. Answer (1)

Hint : Bond angle can be predicted by VSEPR theory.

35. Answer (2)

Hint: Nodal planes can be identified by overlapping of orbitals.

Sol. :	Orbital	Nodal Plane(s)
	σ*1 <i>s</i>	1
	1s	0
	Pure <i>p</i> -orbital	1
	σ1s	0
	σ2s	0

36. Answer (3)

Hint: $2 g of H_2 = 1 mol$

 $32 \text{ g of } O_2 = 1 \text{ mol}$

20 g of Ne = 1 mol

Sol. : Pressure, K.E. ∞ temperature

Most probable speed
$$\propto \sqrt{\frac{T}{M}}$$

- 37. Answer (2)
 - Hint : Formal charge is the charge assigned to an atom in a molecule, assuming that electrons in all chemical bonds are shared equally between atoms, regardless of relative electronegativity.
 - **Sol. :** In CO molecule there is bond order equal to 3 in between C and O.

č=å

38. Answer (4)

Hint : The angle between h_1 and h_2 is 120°

Sol. : sp² hybrid orbitals have bond angle equal to 120°

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

<pre>Fest - 2 (Code-C) (Hints & Solutions)</pre>	All India Aakash Test Series for JEE (Main)-2021
39. Answer (2)	44. Answer (3)
Hint : :: $P_{O_2} = x_{O_2} \times P_{Total}$	Hint: According to kinetic theory of gases there is no interaction between the molecules.
Sol. : $x_{O_2} = \frac{P_{O_2}}{P_{Total}} = \frac{0.2}{16} = \frac{1}{80}$	Sol. : There is no release of heat during mixing and volume change on mixing of two ideal gapper is zero
Mole percent of $O_2 = x_{O_2} \times 100$	ideal gases is zero. 45. Answer (3)
= 1.25 %	Hint : SI unit of surface tension is N/m.
10. Answer (2)	
Hint : Gas liquifies at higher pressure for $T < T_c$	Sol. : Particles on the surface has net attractive force.
Sol. : At point 'd' only liquid phase is present.	46. Answer (38)
At point 'a' only gaseous phase is present.	Hint : ∵ PV = nRT
At point 'c' and 'b' gas is in equilibrium with liquid.	$w = \frac{P \times V \times M}{RT}$
i1. Answer (2)	Sol. : $w = \frac{7.6 \times 0.3 \times 4}{0.08 \times 200}$
Hint : SiO ₂ – Si is sp ³ hybridised	0.08×300
$CH_4 - C$ is sp ³ hybridised	= 0.38 gm
Sol. : $BH_3 - B$ is sp ²	47. Answer (64)
$B_2H_6 - B$ is sp ³	Hint : $\therefore \frac{\text{rate}_1}{\text{rate}_2} = \sqrt{\frac{M_2}{M_1}}$
CO ₂ – C is sp	$rate_2 = \sqrt{M_1}$
$SO_2 - S$ is sp^2	10×10^{-6} /100
$XeO_2F_2 - Xe$ is sp ³ d	Sol. : $\frac{10 \times 10^{-6}}{8 \times 10^{-6}} = \sqrt{\frac{100}{M_x}}$
XeF ₄ – Xe is sp ³ d ²	M _x = 64
2. Answer (2)	
Hint : Coulombic forces are responsible for the	48. Answer (20)
formation of NaCI.	Hint : Pressure ∞ number of moles [at constant T, V].
Sol. : Coulombic forces are inversely proportional to r ² .	Sol. : Initial number of moles of gas = 10 + 1
13. Answer (3)	= 11
Hint: According to kinetic theory of gases,	N_2 + $3H_2 \rightarrow 2NH_3$
gaseous molecule are hard spheres, and there is no force of attraction or repulsion	Initial 1 mol 10 mol 0
between them.	Final 0 10 – 3 2 mol
Sol.: When the particles are close to each	= 7 mol
other, they have no force of attraction or repulsion between them.	Final number of moles = 9 mol

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

49. Answer (20)

Hint:
$$CO + \frac{1}{2}O_2 \longrightarrow CO_2$$

 $H_2 + \frac{1}{2}O_2 \longrightarrow H_2O$

- Sol.: KOH absorbs CO2 only
- \therefore Volume of CO₂ = volume of CO = 15 ml
- \therefore 25 ml of H₂ is in the mixture.
- \therefore 20 ml of O₂ is required.
- 50. Answer (14)
 - **Hint :** 760 mmHg = 1 atm.
 - **Sol. :** Total pressure = 0.9 atm + 50 mmHg

= 734 mmHg

PART - C (MATHEMATICS)

51. Answer (2)

Hint:
$$3\csc \theta - 4\sec \theta = 5\left[\frac{3}{5}\csc \theta - \frac{4}{5}\sec \theta\right]$$
$$= 5\left[\frac{\sin 3\theta}{\sin \theta} - \frac{\cos 3\theta}{\cos \theta}\right].$$

Sol.:
$$3\cos \theta - 4\sec \theta$$

$$= 5 \left[\frac{\frac{3}{5} \cos \theta - \frac{4}{5} \sin \theta}{\sin \theta \cdot \cos \theta} \right]$$
$$= 10 \left[\frac{\sin 3\theta \cdot \cos \theta - \cos 3\theta \cdot \sin \theta}{2 \sin \theta \cdot \cos \theta} \right]$$
$$= 10 \left[\frac{\sin 2\theta}{\sin 2\theta} \right]$$
$$= 10$$

52. Answer (1)

Hint : Put $x = 2\cos\theta$ and solve for θ

Sol. : Let $x = 2\cos\theta$

$$2\cos\theta = \sqrt{2 + \sqrt{2 - 2\sin\frac{\theta}{2}}}$$

$$\Rightarrow 2\cos\theta = \sqrt{2 + \sqrt{2 - 2\cos\left(\frac{\pi}{2} - \frac{\pi}{2}\right)^2}}$$
$$\Rightarrow 2\cos\theta = \sqrt{2 + 2\sin\left(\frac{\pi}{4} - \frac{\theta}{4}\right)^2}$$
$$\Rightarrow 2\cos\theta = \sqrt{2 + 2\cos\left(\frac{\pi}{4} + \frac{\theta}{4}\right)^2}$$
$$\Rightarrow 2\cos\theta = 2\cos\left(\frac{\pi}{8} + \frac{\theta}{8}\right)^2$$
$$\Rightarrow \frac{7\theta}{8} = \frac{\pi}{8}$$
$$\Rightarrow \theta = \frac{\pi}{7}$$
53. Answer (1)

- Hint : $x^2 + y^2 = a^2 + b^2$
- **Sol.**: $a\sin\theta + b\cos\theta = x$...(i)

$$a\cos\theta - b\sin\theta = y$$
 ...(ii)

By squaring and adding

$$a^2 + b^2 = x^2 + y^2$$

Now,
$$\frac{x+b}{y+a} + \frac{y-a}{x-b} = \frac{x^2 + y^2 - a^2 - b^2}{(y+a)(x-b)} = 0$$

54. Answer (4)

Hint: Put
$$\tan\theta = x \Rightarrow \frac{2x^2}{1-x^2} = 1$$

Sol.: $\frac{2\tan\theta}{1-\tan^2\theta} \cdot \tan\theta = 1$

$$\Rightarrow$$
 3tan² θ = 1

$$\Rightarrow \qquad \tan^2\theta = \left(\frac{1}{\sqrt{3}}\right)^2$$

$$\Rightarrow \qquad \theta = n\pi \pm \frac{\pi}{6}$$
$$\Rightarrow \qquad \theta = \frac{(6n \pm 1)\pi}{6} \qquad (n \in z)$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 2 (Code-C) (Hints & Solutions)

 $\frac{\theta}{2}$

Test - 2 (Code-C) (Hints & Solutions)

All India Aakash Test Series for JEE (Main)-2021

55. Answer (2) **Hint :** $\sqrt{x-4}$ and \sqrt{x} must be integer. Sol.: $\cos(\pi\sqrt{x-4}) \cdot \cos(\pi\sqrt{x}) = 1$ $\cos(\pi\sqrt{x-4}) = \cos(\pi\sqrt{x}) = 1$ or \Rightarrow $\cos(\pi\sqrt{x-4}) = \cos(\pi\sqrt{x}) = -1$ $\sqrt{x-4}$ and \sqrt{x} both should be integers. \Rightarrow x = 4 is only possible solution. \Rightarrow 56. Answer (2) **Hint** : $\sin x \leq \cos^2 x$ and $\sin x \in (0, 1)$ and $\cos x \in (0, 1)$ **Sol.**: $\log_{\cos x}(\sin x) \ge 2$ $sin x \le cos^2 x$ \Rightarrow $\sin^2 x + \sin x - 1 \le 0$ \Rightarrow $\sin x \in \left[\frac{-1-\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{2}\right]$ But $\sin x > 0$ So, $\sin x \in \left(0, \frac{-1+\sqrt{5}}{2}\right)$ 57. Answer (1) **Hint :** $\frac{3 \tan x}{1 - \tan^2 x} = 2$ Sol.: $\log_2\left(\frac{3\sin x}{\cos x(1+\tan x)(1-\tan x)}\right) = 2$ $\Rightarrow \frac{3\tan x}{1 \tan^2 x} = 2$ \Rightarrow 2tan²x+3tanx-2=0 \Rightarrow tan $x = \frac{1}{2}$ or -2but $-1 < \tan x < 1$ (domain) So, $\tan x = \frac{1}{2}$ 58. Answer (3) Hint: $f(x) = \frac{5}{2} + 2 \left[\cos x - \frac{1}{2} \right]^2$

Sol.: $f(x) = 3 + 2\cos^2 x - 2\cos x$ $=\frac{5}{2}+2\left(\cos x-\frac{1}{2}\right)^{2}$ So, $M = \frac{5}{2} + \frac{9}{2} = 7$ and $m = \frac{5}{2}$ 59. Answer (3) **Hint**: $1 + \sin x = 2\cos^2 x \Rightarrow 2\sin^2 x + \sin x - 1 = 0$ **Sol.**: $\frac{1+\sin x}{\cos x} = 2\cos x$ \Rightarrow 1 + sinx = 2cos²x \Rightarrow $2\sin^2 x + \sin x - 1 = 0$ \Rightarrow $\sin x = \frac{1}{2}, -1$ $\Rightarrow \qquad x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2}$ But at $x = \frac{3\pi}{2}$, tanx and secx are not defined. So, $x = \frac{\pi}{6}$ and $\frac{5\pi}{6}$ 60. Answer (3) **Hint**: $\sin x = \pm 1$ or $\cos x = 1$ **Sol.**: $\cos^7 x - (1 - \sin^2 x) (1 + \sin^2 x) = 0$ $\Rightarrow \cos^2 x \left[\cos^5 x - 1 - \sin^2 x\right] = 0$ $\Rightarrow \qquad \cos^2 x = 0 \text{ or } \cos^5 x = 1 + \sin^2 x$ $\Rightarrow x = \pm \frac{\pi}{2}$ cosx = 1 x = 061. Answer (4) **Hint**: 2B = (2A + B) - (2A - B)**Sol.**: tan(2B) = tan((2A + B) - (2A - B)) $\tan 2B = \frac{\tan(2A+B) - \tan(2A-B)}{1 + \tan(2A+B) \cdot \tan(2A-B)}$ \Rightarrow $=\frac{\frac{1}{2}-\frac{1}{3}}{1+\frac{1}{2}\cdot\frac{1}{2}}$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

62. Answer (3)

Hint : $\frac{\cos \alpha}{\cos \beta} = \frac{1}{3}$ (Now use componendo and dividendo).

Sol.:

- $\frac{\cos\alpha}{\cos\beta} = \frac{1}{3}$ ÷
- $\frac{\cos\beta-\cos\alpha}{\cos\beta+\cos\alpha}=\frac{3-1}{3+1}$ \Rightarrow

$$\Rightarrow \frac{2\sin\left(\frac{\alpha-\beta}{2}\right)\cdot\sin\left(\frac{\alpha+\beta}{2}\right)}{2\cos\left(\frac{\alpha-\beta}{2}\right)\cdot\cos\left(\frac{\alpha+\beta}{2}\right)} = \frac{1}{2}$$
$$\Rightarrow \tan\left(\frac{\alpha+\beta}{2}\right)\cdot\tan\left(\frac{\alpha+\beta}{2}\right) = \frac{1}{2}$$

63. Answer (4)

Hint: $\sin 2A + \sin 2B = 2\sin(A + B) \cdot \cos(A - B)$ $= -2\sin C \cdot \cos(A - B)$

Sol.:

 $\sin 2A + \sin 2B - \sin 2C = 2\sin(A + B).$ $\cos(A + B) - \sin 2C$ $= -2\sin C \cdot \cos(A - B) - 2\sin C \cdot \cos C$ $= -2\sin C \left[\cos(A - B) + \cos(2\pi - (A + B))\right]$ $= -2\sin C[2\cos A \cdot \cos B] = -4\cos A\cos B\sin C$ 64. Answer (2) **Hint**: arg(1 + 2i) < arg(z) < arg(-3 + 4i)Sol.: z₃(-3+4/) z.(1+2i)

$$\arg(z_1) > \frac{\pi}{4}$$

$$\arg(z_2) < \frac{3\pi}{4}$$

and
$$\arg(z_1) < \arg(z) < \arg(z_2)$$

The only possible value of
$$\arg(z)$$
 is $\frac{\pi}{2}$

65. Answer (1)
Hint : Let
$$\frac{Z_1}{Z_2} = z$$
 then find $|z|$.
Sol. : Let $\frac{Z_1}{Z_2} = z$
 $z + \frac{1}{z} = 1$
 $\Rightarrow z^2 - z + 1 = 0$
 $\Rightarrow z = \frac{1 \pm \sqrt{3}i}{2}$
 $\Rightarrow \frac{Z_1}{Z_2} = \frac{1 \pm \sqrt{3}i}{2}$
 $\Rightarrow |\frac{Z_1}{Z_2}| = 1 \Rightarrow |z_1| = |z_2|$
66. Answer (3)
Hint : $|z_1| = |z_3| = 3$ and $|z_2| = \frac{2}{\sqrt{3}}$.
Sol. : $|z_1| = |z_3| = 3$ and $|z_2| = \frac{2}{\sqrt{3}}$.
 $\frac{1}{|\sqrt{z_1}|} + |\sqrt{z_3}| = \frac{1}{\sqrt{3}} + \sqrt{3} = \frac{4}{\sqrt{3}} = 2|z_2|$
67. Answer (1)
Hint : $a = -3, -2, 6, 7$
Sol. :
Let α, β are the integer roots of the equation, then $\alpha + \beta = a$ and $\alpha, \beta = a + 3$
 $\Rightarrow \alpha + \beta = \alpha\beta - 3$
 $\Rightarrow \alpha + \beta = \alpha\beta - 3$
 $\Rightarrow \beta = \frac{\alpha + 3}{\alpha - 1}$
Here α is an integer and $(\alpha - 1)$ must divide 4, So, $\alpha = 2, 0, 3, -1, 5, -3$
So two roots of the equation may be;
 $(2, 5), (0, -3), (3, 3)$ or $(-1, -1)$

$$(2, 5), (0, -3), (3, 3)$$
 or $(-1, -1)$

a = sum of roots ÷

Then possible values of a are 7, 6, -3, -2.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 2 (Code-C) (Hints & Solutions)	All India Aakash Test Series for JEE (Main)-2021
68. Answer (2)	(i) $D > 0$
Hint: $2\left(x^2+\frac{1}{x^2}\right)-7\left(x+\frac{1}{x}\right)+9=0$,	$\Rightarrow 4 - 16 a > 0$
put $x + \frac{1}{x} = t$	$\Rightarrow a \in \left(-\infty, \frac{1}{4}\right)$
Sol. :	(ii) $f(-1) > 0$
$2(x^4 + 1) - 7(x^3 + x) + 9x^2 = 0$	$\Rightarrow 4 + 2 + a > 0$ $\Rightarrow a \in (-6, \infty)$
$\Rightarrow 2\left(x^2 + \frac{1}{x^2}\right) - 7\left(x + \frac{1}{x}\right) + 9 = 0$	$\Rightarrow a \in (-0, \infty)$ (iii) $f(1) > 0$
$\Rightarrow 2\left(x+\frac{1}{x}\right)^2 - 7\left(x+\frac{1}{x}\right) + 5 = 0$	$\Rightarrow 4 - 2 + a > 0$ $\Rightarrow a \in (-2, \infty)$
$\Rightarrow \text{Let } x + \frac{1}{x} = t$	(iv) $-1 < -\frac{b}{2a} < 1$
$\Rightarrow 2t^2 - 7t + 5 = 0$	$\Rightarrow -1 < \frac{1}{4} < 1 $ (Always true)
\Rightarrow $t=1 \text{ or } \frac{5}{2}$	So, $a \in \left(-2, \frac{1}{4}\right)$
When $x + \frac{1}{x} = 1$	Possible integral values of <i>a</i> are −1 and 0.
1 5	70. Answer (3)
$\Rightarrow \qquad x = \frac{1}{2} \pm \frac{\sqrt{3}}{2}i \text{ (Imaginary roots)}$	Hint : $f(x) \ge 0$
When $x + \frac{1}{2} = \frac{5}{2}$	Sol. :
$x + \frac{1}{x} = \frac{1}{2}$	Let $f(x) = ax^2 + bx + 32$
\Rightarrow x = 2, $\frac{1}{2}$ (Real roots)	The graph of $y = f(x)$ does not cut the x-axis at two distinct points.
69. Answer (1)	Also $f(0) > 0$, so graph of $f(x)$ always remains on or above the x-axis.
Hint : $D > 0 \cap f(1) > 0 \cap f(-1) > 0 \cap -\frac{b}{2a} \in (-1, 1)$	So, $f(x) \ge 0$ for all $x \in R$
Sol. :	$\Rightarrow f(4) \ge 0$
Let $f(x) = 4x^2 - 2x + a$	16 <i>a</i> + 4 <i>b</i> + 32 ≥ 0
\therefore f(x) = 0 has two distinct real roots in	4 <i>a</i> + <i>b</i> ≥ −8
(–1, 1), then	71. Answer (27)
	Hint : $(3\sin\theta - 4\cos\theta)(3\cos\theta + 4\sin\theta)$ = $-\frac{7}{2}\sin\theta - 12\cos\theta$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Main)-2021	
Sol. : $(3\sin\theta - 4\cos\theta)(3\cos\theta + 4\sin\theta)$ = $-12(\cos^2\theta - \sin^2\theta) - 7(\sin\theta.\cos\theta)$	⇒
$= -\frac{1}{2} [24\cos 2\theta + 7\sin 2\theta]$ $\therefore \text{Range} \text{of} a\sin\theta + b\cos\theta \text{is}$ $\left[-\sqrt{a^2 + b^2}, \sqrt{a^2 + b^2} \right]$	⇒ area
So maximum value of given expression is $\frac{1}{2}\sqrt{24^2 + 7^2} = \frac{25}{2}$	74. Answ
72. Answer (08)	Hint
Hint : Use $\cos\theta \cdot \cos(60^\circ - \theta) \cdot \cos(60^\circ + \theta) = \frac{1}{4}\cos 3\theta$	Sol. :
Sol. :	Sum
$\cos 6^{\circ} \cdot \sin 18^{\circ} \cdot \sin 24^{\circ} = \cos 6^{\circ} \cdot \cos 66^{\circ} \cdot \sin 18^{\circ}$ $= \frac{\cos 6^{\circ} \cdot \cos 66^{\circ} \cdot \cos 54^{\circ} \cdot \sin 18^{\circ}}{54^{\circ} \cdot \sin 18^{\circ}}$	Sum
$\cos 54^{\circ}$ $= \frac{1}{4} \frac{\cos 18^{\circ} \cdot \sin 18^{\circ}}{\sin 36^{\circ}}$	Now
4 sin36°	75. Answ
$=\frac{1}{8}$	Hint
73. Answer (20)	
Hint : $z = i, -i, 2$.	Sol. :
Sol. :	(i) .
	(ii) .
2	(iii)
	\Rightarrow

 $z(z-1)^2 = 2$ $z^3 - 2z^2 + z - 2 = 0$ $(z-2)(z^2+1)=0$ $z = 2, \pm i$ of triangle $=\frac{1}{2}(2)(2)$ = 2 wer (05) : Consider the roots n - 2, n - 1, n, n + 1and *n* + 2. 2 of roots = -a = 5nof product of two roots, $= b = 10n^2 - 5$ $\frac{2a^2}{b+5} = \frac{2(-5n)^2}{10n^2} = 5$ wer (05) : $a^b = 1 \Rightarrow a = 1$ or b = 0 or a = -1 and b is even : If $(x^2 - 5x + 5)^{x^2 - 12x + 35} = 1$, then $x^2 - 12x + 35 = 0 \implies x = 5, 7$ $x^2 - 5x + 5 = 1 \qquad \Rightarrow \qquad x = 1, 4$ $x^2 - 5x + 5 = -1$ and $x^2 - 12x + 35$ is even x = 3

Test - 2 (Code-C) (Hints & Solutions)

All India Aakash Test Series for JEE (Main)-2021

TEST-2 - Code-D

Test Date : 10/11/2019

ANSWERS					
PHY	SICS	СНЕМ	ISTRY	MATH	EMATICS
1.	(2)	26.	(3)	51.	(3)
2.	(3)	27.	(3)	52.	(1)
3.	(4)	28.	(3)	53.	(2)
4.	(3)	29.	(2)	54.	(1)
5.	(4)	30.	(2)	55.	(3)
6.	(4)	31.	(2)	56.	(1)
7.	(1)	32.	(2)	57.	(2)
8.	(2)	33.	(4)	58.	(4)
9.	(1)	34.	(2)	59.	(3)
10.	(2)	35.	(3)	60.	(4)
11.	(3)	36.	(2)	61.	(3)
12.	(4)	37.	(1)	62.	(3)
13.	(2)	38.	(1)	63.	(3)
14.	(3)	39.	(1)	64.	(1)
15.	(2)	40.	(4)	65.	(2)
16.	(1)	41.	(3)	66.	(2)
17.	(4)	42.	(1)	67.	(4)
18.	(1)	43.	(3)	68.	(1)
19.	(1)	44.	(1)	69.	(1)
20.	(2)	45.	(2)	70.	(2)
21.	(50)	46.	(14)	71.	(05)
22.	(18)	47.	(20)	72.	(05)
23.	(10)	48.	(20)	73.	(20)
24.	(45)	49.	(64)	74.	(08)
25.	(60)	50.	(38)	75.	(27)

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 2 (Code-D) (Hints & Solutions)

HINTS & SOLUTIONS

PART - A (PHYSICS)

1. Answer (2)

Hint:
$$\frac{dv}{dt} = -\frac{\mu mg}{m} = -\mu g$$

Sol. : $\frac{dv}{dt} = -\mu g$

From figure: $-\mu g = -\frac{8}{4}$

- $\Rightarrow \mu g = 2$
- $\Rightarrow \mu = 0.2$
- 2. Answer (3)

Hint : $fr_{\text{max}} = \mu \left(g + \frac{g}{4}\right) M_2$; limiting friction will appear between M_1 and M_2 .

Sol.:
$$fr_{\text{max}} = \frac{1}{5} \left(\frac{5g}{4} \right) 2 = 5 \text{ N}$$

 \therefore Acceleration of M_2 w.r.t. lift

$$a_2 = \frac{5}{2} = 2.5 \text{ m/s}^2$$

And acceleration of M₁ w.r.t lift

$$a_2 = \frac{F-5}{8} = \frac{25}{8} \text{ m/s}^2$$

3. Answer (4)

Hint:
$$\frac{(F + F\cos\theta) - (Mg - F\sin\theta)\mu}{M} = a_0$$

Sol.:
$$\frac{(F + F\cos\theta) - (Mg - F\sin\theta)\mu}{M} = a_0$$
$$\Rightarrow \quad a_0 = \frac{10\left(1 + \frac{4}{5}\right) - \left(10 - 10 \times \frac{3}{5}\right)\frac{1}{2}}{1}$$
$$\Rightarrow \quad a_0 = \frac{18 - 2}{1} = 16 \text{ m/s}^2$$

4. Answer (3)

Hint : Limiting friction appears at both the surface.

Sol. : $F = \mu_2(m_1 + m_2)g + \mu_1 m_1 g$

$$\Rightarrow \qquad F = \frac{2}{10} \times 10(3) + \frac{1}{10} \times 1 \times 10$$

 \Rightarrow F = 6 + 1 = 7 N

5. Answer (4)

Hint: Uniform circular motion

Sol.: Particle is in circular motion with speed $5 \times 20 = 100 \text{ m/s}$

6. Answer (4)

Hint : It will be elongated for any value of M > 0.

Sol. : It will be elongated for any value of M > 0.

7. Answer (1)

Hint : Normal force by weighing machine is the reading.

.

Sol.:
$$N = 50(16)\cos 60^\circ = 50 \times 16 \times \frac{1}{2}$$

- \Rightarrow N = 400 newton
- \therefore Reading = 40 kg.
- 8. Answer (2)

Hint : F^2 + $(W \sin \alpha)^2$ = $(\mu W \cos \alpha)^2$

Sol.:
$$F^2 + (W \sin \alpha)^2 = (\mu W \cos \alpha)^2$$

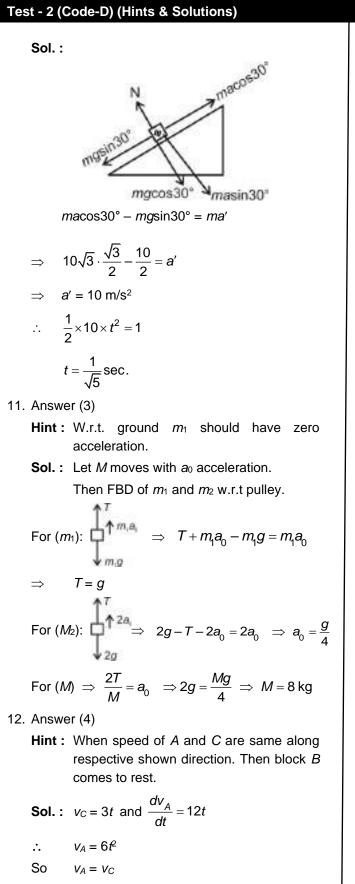
$$\Rightarrow \qquad F^2 = 4W^2 \cos^2 \alpha \cdot \frac{\sin^2 \alpha}{\cos^2 \alpha} - W^2 \sin^2 \alpha = 3W^2 \sin^2 \alpha$$

$$\Rightarrow$$
 $F = \sqrt{3} W \sin \alpha$

9. Answer (1)

Hint : Range = (Time of flight) × (Horizontal speed)

Sol.:
$$\vec{v} = a\vec{i} + (b - ct)\hat{j}$$


$$\Rightarrow$$
 time of flight $=\frac{2b}{c}$

$$\therefore \qquad R = \frac{2ab}{c}$$

10. Answer (2)

Hint : Find the acceleration of block w.r.t. wedge along the inclined plane.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

- All India Aakash Test Series for JEE (Main)-2021
- 13. Answer (2)

Hint :
$$\vec{V}_{Rp} = \vec{V}_{Rqr} - \vec{V}_{Pq}$$

Sol.:
$$V_{Rp} = V_{Rqr} + V_{Qrp}$$
: $V_{Rqr} - V_{Pqr}$

14. Answer (3)

...

....

Hint : Same range at $\theta = \theta$ and $90 - \theta$

Sol. : Same range at θ and $90 - \theta$

$$R = \frac{2u^2 \sin \theta \cdot \cos \theta}{q}$$

$$T_{1} = \frac{2u\sin\theta}{g} \text{ and } T_{2} = \frac{2u\cos\theta}{g}$$

$$T_{1}T_{2} = \frac{4u^{2}\sin\theta\cos\theta}{g^{2}} = \frac{2}{g} \left(\frac{u^{2}\sin^{2}\theta}{g}\right)$$

$$T_{1}T_{2} = \frac{2R}{g}$$

$$T_{1}T_{2} = \frac{2R}{g}$$

15. Answer (2)

Hint : Total driving force must be able to overcome the maximum resistive force.

Sol.:

$$\mu \frac{m}{l} \left(l - \frac{l}{n} \right) g = \left(\frac{m}{l} \right) \frac{l}{n} \cdot g$$

$$\Rightarrow \qquad \frac{\mu}{l} \left| \frac{n-1}{n} \right| l = \frac{1}{n}$$

$$\Rightarrow \qquad \mu = \frac{1}{n-1}$$

Sol.:
$$v_C = 3t$$
 and $\frac{dv_A}{dt} = 12t$
 $\therefore \quad v_A = 6t^2$
So $v_A = v_C$
 $\Rightarrow \quad t = \frac{1}{2}$

Test - 2 (Code-D) (Hints & Solutions)

16. Answer (1)

Hint : Constraints motion $a_m = 5a_M$

$$\therefore$$
 $mg - T = ma_1 \dots (i)$

For (*M*)
$$\underbrace{\uparrow}_{Mg}^{57}$$

$$\Rightarrow 5T - Mg = Ma_2 \qquad \dots (ii)$$
$$a_1 = 5a_2$$

$$\Rightarrow mg = m(5a_2) + T \dots (iii)$$

17. Answer (4)

Hint : $a_0 = \frac{F}{M+m}$ forces on *m* with respect to *M* along the plane must be zero.

Sol.:

θ

$$a_0 = \frac{F}{M+m}$$

$$\Rightarrow mg \sin\theta = (F - ma_0)\cos\theta$$
$$\Rightarrow mg \tan\theta = F - \frac{mF}{M + m}$$
$$\Rightarrow mg \tan\theta = \frac{FM}{M + m}$$

$$\Rightarrow$$
 $F = \frac{(M+m)}{M}mg \tan \theta$

18. Answer (1)

Hint:
$$\vec{v}_{b, gr} = u \hat{j} + \left(\frac{2v_0}{d}\right) y \hat{i}$$
 (upto half width)

Total drift will be double of the drift upto half width.

Sol.: Velocity profile of river is as shown in figure.

$$\therefore \quad \vec{v}_{b, gr} = u \hat{j} + \left(\frac{2v_0}{d}\right) y \hat{i}$$

$$\therefore \quad y = ut \text{ and } dx = \int \left(\frac{2v_0}{d}\right) ut \, dt$$

$$\therefore \quad (X_{half}) = \frac{2v_0}{d} \cdot u \cdot \frac{1}{2} \cdot \frac{d^2}{4u^2}$$

$$\Rightarrow \quad (X_{half}) = \frac{v_0 d}{4u}$$

$$\therefore \quad X = \frac{v_0 d}{2u}$$
19. Answer (1)

Hint :
$$\vec{v}_{w, m} = \vec{v}_{w, gr} - \vec{v}_{w, gr}$$

Sol.:

:..

$$W \longrightarrow E \rightarrow x$$

$$\vec{v}_{w, gr} = -v\hat{i}$$

$$\vec{v}_{w, gr} = at \hat{j}$$

$$\therefore \quad \vec{v}_{w, m} = -v\hat{i} - at \hat{j}$$
to man the direction of wind become south-west

then $|\vec{v}| = |\vec{a}|t \implies t = \frac{|\vec{v}|}{|\vec{a}|}$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 2 (Code-D) (Hints & Solutions)	All Ind
20. Answer (2)	24. A
Hint : $V_{\text{APP}} = v - v \cos\left(\frac{\pi}{6}\right)$	F
Sol. : Velocity of approach $v - v \cos\left(\frac{\pi}{6}\right)$	s
$\Rightarrow \qquad V_{\rm APP} = v \left(1 - \frac{\sqrt{3}}{2} \right)$	
$\therefore \qquad T = \frac{2a}{v(2-\sqrt{3})}$	
$\therefore \qquad \text{distance travelled } s = vT = \frac{2a}{2 - \sqrt{3}}$	= 25. A
21. Answer (50)	
Hint : $T = \frac{mv^2}{R}$	F S
Sol. : $T = \frac{mv^2}{R}$	
$=\frac{2\times(5)^2}{1}$	S b
= 50 N	a
22. Answer (18)	
Hint : Collision time $T = \frac{40}{m}$	26. A

Sol. : Time of collision $T = \frac{40}{24} \sec \theta$

$$\Rightarrow T = \frac{5}{3} \sec$$
$$\Rightarrow V_B = \frac{30 \times 3}{5} = 18 \text{ m/s}$$

23. Answer (10)

Hint:
$$R_{\text{max}} = \frac{u^2}{g(1+\sin\theta)}$$

Sol.: $u^2 = R_{\text{max}} \cdot g(1+\sin\theta)$
 $\Rightarrow \quad u^2 = 5 \times 10 \times \left(1 + \frac{4}{5}\right)$
 $\Rightarrow \quad u^2 = 5 \times 10 \times \frac{9}{5}$
 $\Rightarrow \quad u = 3\sqrt{10} \text{ m/s}$

All India Aakash Test Series for JEE (Main)-2021

Hint:
$$R = \frac{4^2 \sin 2\theta}{g}$$

Sol.: $R = \frac{4^2 \cdot \sin 2\theta}{g} = 30$
∴ $\sin 2\theta = \frac{30 \times 10}{100 \times 100} = \frac{3}{100}$
 $\theta \approx 0.86^\circ$
∴ $\tan \theta = \frac{y}{30 \text{ m}} = y = 30 \times 100 \times \tan \theta$

$$\Rightarrow$$
 y = 45 cm

25. Answer (60)

Hint : Limiting friction at the contact of *C* and ground is minimum.

Sol. :
$$fr_{max}(AB) = 90 \text{ N}$$

$$fr_{\max}(BC) = 80 \text{ N};$$

 $fr_{max}(C.ground) = 60 N$

So, motion starts at the interface of ground and block *C*. And all the blocks will move together at applied force of 60 N.

PART - B (CHEMISTRY)

26. Answer (3)

Hint : SI unit of surface tension is N/m.

- **Sol. :** Particles on the surface has net attractive force.
- 27. Answer (3)
 - **Hint :** According to kinetic theory of gases there is no interaction between the molecules.
 - **Sol.**: There is no release of heat during mixing and volume change on mixing of two ideal gases is zero.
- 28. Answer (3)
 - Hint: According to kinetic theory of gases, gaseous molecule are hard spheres, and there is no force of attraction or repulsion between them.
 - **Sol.**: When the particles are close to each other, they have no force of attraction or repulsion between them.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

29. Answer (2)

- **Hint :** Coulombic forces are responsible for the formation of NaCl.
- **Sol.**: Coulombic forces are inversely proportional to r².
- 30. Answer (2)
 - **Hint** : $SiO_2 Si$ is sp^3 hybridised CH₄ - C is sp^3 hybridised
 - **Sol.**: $BH_3 B$ is sp^2

 $\begin{array}{l} B_2H_6-B \text{ is sp}^3\\ CO_2-C \text{ is sp}\\ SO_2-S \text{ is sp}^2\\ XeO_2F_2-Xe \text{ is sp}^3d\\ XeF_4-Xe \text{ is sp}^3d^2 \end{array}$

- 31. Answer (2)

 - **Sol. :** At point 'd' only liquid phase is present.

At point 'a' only gaseous phase is present.

At point 'c' and 'b' gas is in equilibrium with liquid.

32. Answer (2)

Hint : :: $P_{O_2} = x_{O_2} \times P_{Total}$

Sol.:
$$x_{O_2} = \frac{P_{O_2}}{P_{Total}} = \frac{0.2}{16} = \frac{1}{80}$$

Mole percent of $O_2 = x_{O_2} \times 100$

= 1.25 %

- 33. Answer (4)
 - Hint : The angle between h_1 and h_2 is 120°
 - **Sol. :** sp² hybrid orbitals have bond angle equal to 120°
- 34. Answer (2)
 - Hint : Formal charge is the charge assigned to an atom in a molecule, assuming that electrons in all chemical bonds are shared equally between atoms, regardless of relative electronegativity.
 - **Sol. :** In CO molecule there is bond order equal to 3 in between C and O.

č=ô

35. Answer (3)

Hint: $2 \text{ g of } H_2 = 1 \text{ mol}$ $32 \text{ g of } O_2 = 1 \text{ mol}$ 20 g of Ne = 1 mol

Sol. : Pressure, K.E. \propto temperature

Most probable speed
$$\propto \sqrt{\frac{T}{M}}$$

- 36. Answer (2)
 - Hint: Nodal planes can be identified by overlapping of orbitals.

Test - 2 (Code-D) (Hints & Solutions)

Sol.:OrbitalNodal Plane(s) σ^*1s 11s0Pure p-orbital1

σ1s σ2s

37. Answer (1)

Hint : Bond angle can be predicted by VSEPR theory.

0

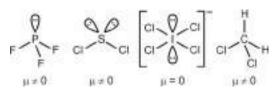
0

38. Answer (1)

- **Hint :** *p*_x, *p*_y and *p*_z orbitals are required to form tetrahedral geometry along with *s*-orbitals.
- **Sol. :** ns orbital can combine with np orbitals as they are close in energy.
- 39. Answer (1)
 - Hint : Characteristic of an hybrid orbital depends upon the % of *s*-character.
 - Sol.: .: The s-orbitals are spherical, lower in

energy and close to the nucleus, its % increase in hybrid orbital cause bulkiness and shortening of the orbital.

- 40. Answer (4)
 - **Hint :** As the number of unpaired electrons increases, magnetic moment increases.
 - **Sol.**: C_2 Diamagnetic


C₂⁻ - Paramagnetic

All other processes will result into decrease in magnetic moment.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 2 (Code-D) (Hints & Solutions)

- 41. Answer (3)
 - **Hint :** For non-polar molecule, dipole moment $\mu = 0$.
 - Sol.:

- 42. Answer (1)
 - Hint : Consider the dipole moment of the respective molecule.
 - **Sol.:** In CI F molecule, fluorine is more electronegative
 - 8+ 8-CI — F

$$\therefore$$
 correct orientation is $\begin{bmatrix} F - \\ F - \end{bmatrix}$

- 43. Answer (3)
 - **Hint :** In a covalent bond, the two electrons are placed in between the nuclei of both the atoms.
 - **Sol.**: Both the electrons are under the influence of both nuclear charges.
- 44. Answer (1)
 - **Hint :** Lattice energy ∞ charge density on ions.
 - Sol.: Order for magnitude of lattice energy should be

 $MgO > MgF_2 > LiF > NaCl > KI$

- 45. Answer (2)
 - Hint : Lattice formation between gaseous cation and anion are energy releasing process, Cl has –ve E.G.E.
 - Sol.: $\underset{(g)}{CI+e^-} \xrightarrow{CI^-} \underset{(g)}{electron gain enthalpy}$

$$\operatorname{Na}_{g} + \operatorname{Cl}_{(g)}^{-} \longrightarrow \operatorname{NaCl}_{(s)}$$
 lattice energy.

- 46. Answer (14)
 - **Hint :** 760 mmHg = 1 atm.
 - **Sol. :** Total pressure = 0.9 atm + 50 mmHg

= 734 mmHg

All India Aakash Test Series for JEE (Main)-2021

47. Answer (20)

Hint:
$$CO + \frac{1}{2}O_2 \longrightarrow CO_2$$

 $H_2 + \frac{1}{2}O_2 \longrightarrow H_2O$

- Sol. : KOH absorbs CO2 only
- \therefore Volume of CO₂ = volume of CO = 15 ml
- \therefore 25 ml of H₂ is in the mixture.
- \therefore 20 ml of O₂ is required.
- 48. Answer (20)
 - Hint : Pressure ∞ number of moles [at constant T, V].
 - Sol.: Initial number of moles of gas = 10 + 1

$$N_2$$
 + $3H_2 \rightarrow 2NH_3$
Initial 1 mol 10 mol 0
Final 0 10 - 3 2 mol
= 7 mol

Final number of moles = 9 mol

49. Answer (64)

Hint :
$$\therefore \frac{\text{rate}_1}{\text{rate}_2} = \sqrt{\frac{M_2}{M_1}}$$

Sol.:
$$\frac{10 \times 10^{-6}}{8 \times 10^{-6}} = \sqrt{\frac{100}{M_x}}$$

$$M_{x} = 64$$

50. Answer (38)

Hint : ∵ PV = nRT

$$w = \frac{P \times V \times M}{RT}$$

Sol.:
$$w = \frac{7.6 \times 0.3 \times 4}{0.08 \times 300}$$

= 0.38 gm

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Main)-2021	Test - 2 (Code-D) (Hints & Solutions)
PART - C (MATHEMATICS)	(iii) $f(1) > 0$
51. Answer (3)	$\Rightarrow 4-2+a>0$
Hint : $f(x) \ge 0$	$\Rightarrow a \in (-2, \infty)$
Sol. :	(iv) $-1 < -\frac{b}{2a} < 1$
Let $f(x) = ax^2 + bx + 32$	$\Rightarrow -1 < \frac{1}{4} < 1$ (Always true)
The graph of $y = f(x)$ does not cut the x-axis at two distinct points.	So, $a \in \left(-2, \frac{1}{4}\right)$
Also $f(0) > 0$, so graph of $f(x)$ always remains on or above the <i>x</i> -axis.	Possible integral values of <i>a</i> are –1 and 0.
So, $f(x) \ge 0$ for all $x \in R$	53. Answer (2)
$\Rightarrow \qquad f(4) \ge 0$	Hint: $2\left(x^2+\frac{1}{x^2}\right)-7\left(x+\frac{1}{x}\right)+9=0$,
$16a + 4b + 32 \ge 0$	put $x + \frac{1}{x} = t$
4 <i>a</i> + <i>b</i> ≥ −8	*
52. Answer (1)	Sol.: $2(x^4 + 1) - 7(x^3 + x) + 9x^2 = 0$
Hint : $D > 0 \cap f(1) > 0 \cap f(-1) > 0 \cap -\frac{b}{2a} \in (-1, 1)$	$\Rightarrow 2\left(x^{2}+1\right)-7\left(x^{2}+x\right)+9x^{2}=0$
Sol. :	
Let $f(x) = 4x^2 - 2x + a$	$\Rightarrow 2\left(x+\frac{1}{x}\right)^2 - 7\left(x+\frac{1}{x}\right) + 5 = 0$
∴ $f(x) = 0$ has two distinct real roots in (-1, 1), then	\Rightarrow Let $x + \frac{1}{x} = t$
\backslash /	$\Rightarrow 2t^2 - 7t + 5 = 0$
-1 1	\Rightarrow $t=1$ or $\frac{5}{2}$
(i) D > 0	When $x + \frac{1}{x} = 1$
$\Rightarrow 4 - 16 a > 0$	
$\Rightarrow a \in \left(-\infty, \frac{1}{4}\right)$	$\Rightarrow \qquad x = \frac{1}{2} \pm \frac{\sqrt{3}}{2}i \text{ (Imaginary roots)}$
(ii) $f(-1) > 0$	When $x + \frac{1}{x} = \frac{5}{2}$
$\Rightarrow 4+2+a>0$	\Rightarrow $x = 2, \frac{1}{2}$ (Real roots)
$\Rightarrow a \in (-6, \infty)$	$\frac{2}{2}$

Test - 2 (Code-D) (Hints & Solutions) All India Aakash Test Series for JEE (Main)-2021 54. Answer (1) 57. Answer (2) **Hint**: a = -3, -2, 6, 7**Hint**: arg(1 + 2i) < arg(z) < arg(-3 + 4i)Sol.: Sol.: z(-3+4i) z.(1+2/) Let α , β are the integer roots of the equation, then $\alpha + \beta = a$ and $\alpha.\beta = a + 3$ $\alpha + \beta = \alpha\beta - 3$ \Rightarrow $\Rightarrow \qquad \beta = \frac{\alpha + 3}{\alpha - 1}$ $\arg(z_1) > \frac{\pi}{\lambda}$ $\Rightarrow \qquad \beta = 1 + \frac{4}{\alpha - 1}$ $\arg(z_2) < \frac{3\pi}{4}$ Here α is an integer and $(\alpha - 1)$ must divide 4, and $\arg(z_1) < \arg(z) < \arg(z_2)$ So, $\alpha = 2, 0, 3, -1, 5, -3$ So two roots of the equation may be; The only possible value of $\arg(z)$ is $\frac{\pi}{2}$ (2, 5), (0, -3), (3, 3) or (-1, -1)58. Answer (4) \therefore a = sum of roots **Hint**: $\sin 2A + \sin 2B = 2\sin(A + B) \cdot \cos(A - B)$ Then possible values of a are 7, 6, -3, -2. $= -2\sin C \cdot \cos(A - B)$ 55. Answer (3) Sol.: **Hint :** $|z_1| = |z_3| = 3$ and $|z_2| = \frac{2}{\sqrt{3}}$. $\sin 2A + \sin 2B - \sin 2C = 2\sin(A + B).$ $\cos(A + B) - \sin 2C$ **Sol.:** $|z_1| = |z_3| = 3$ and $|z_2| = \frac{2}{\sqrt{3}}$ $= -2\sin C \cdot \cos(A - B) - 2\sin C \cdot \cos C$ $\frac{1}{|\sqrt{z_1}|} + |\sqrt{z_3}| = \frac{1}{\sqrt{3}} + \sqrt{3} = \frac{4}{\sqrt{3}} = 2|z_2|$ $= -2\sin C \left[\cos(A - B) + \cos(2\pi - (A + B))\right]$ $= -2\sin C[2\cos A \cdot \cos B] = -4\cos A\cos B\sin C$ 56. Answer (1) 59. Answer (3) **Hint :** Let $\frac{Z_1}{Z_2} = z$ then find |z|. **Hint :** $\frac{\cos \alpha}{\cos \beta} = \frac{1}{3}$ (Now use componendo and dividendo). **Sol.**: Let $\frac{Z_1}{Z_2} = Z$ Sol. : $\frac{\cos\alpha}{\cos\beta} = \frac{1}{3}$ $z + \frac{1}{7} = 1$ ÷ $\Rightarrow z^2 - z + 1 = 0$ $\Rightarrow \qquad \frac{\cos\beta - \cos\alpha}{\cos\beta + \cos\alpha} = \frac{3-1}{3+1}$ $\Rightarrow \qquad z = \frac{1 \pm \sqrt{3}i}{2}$ $\Rightarrow \qquad \frac{2\sin\left(\frac{\alpha-\beta}{2}\right)\cdot\sin\left(\frac{\alpha+\beta}{2}\right)}{2\cos\left(\frac{\alpha-\beta}{2}\right)\cdot\cos\left(\frac{\alpha+\beta}{2}\right)} = \frac{1}{2}$ $\Rightarrow \frac{z_1}{z_2} = \frac{1 \pm \sqrt{3}i}{2}$ $\Rightarrow \qquad \left|\frac{z_1}{z_2}\right| = 1 \Rightarrow |z_1| = |z_2|$ \Rightarrow $\tan\left(\frac{\alpha+\beta}{2}\right)\cdot \tan\left(\frac{\alpha+\beta}{2}\right) = \frac{1}{2}$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 2 (Code-D) (Hints & Solutions)

60. Answer (4) Hint : 2B = (2A + B) - (2A - B)Sol. : $\tan(2B) = \tan((2A + B) - (2A - B))$ $\Rightarrow \quad \tan 2B = \frac{\tan(2A + B) - \tan(2A - B)}{1 + \tan(2A + B) \cdot \tan(2A - B)}$ $= \frac{\frac{1}{2} - \frac{1}{3}}{1 + \frac{1}{2} \cdot \frac{1}{3}}$ $= \frac{1}{7}$ 61. Answer (3) Hint : $\sin x = \pm 1 \text{ or } \cos x = 1$

Sol.:
$$\cos^7 x - (1 - \sin^2 x) (1 + \sin^2 x) = 0$$

 $\Rightarrow \quad \cos^2 x [\cos^5 x - 1 - \sin^2 x] = 0$
 $\Rightarrow \quad \cos^2 x = 0 \text{ or } \cos^5 x = 1 + \sin^2 x$
 $\Rightarrow \quad x = \pm \frac{\pi}{2} \qquad \cos x = 1$

62. Answer (3)

Hint: $1 + \sin x = 2\cos^2 x \Rightarrow 2\sin^2 x + \sin x - 1 = 0$

x = 0

Sol.:
$$\frac{1+\sin x}{\cos x} = 2\cos x$$

$$\Rightarrow \quad 1 + \sin x = 2\cos^2 x$$

$$\Rightarrow \quad 2\sin^2 x + \sin x - 1 = 0$$

$$\Rightarrow \quad \sin x = \frac{1}{2}, -1$$

$$\Rightarrow \quad x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2}$$

But at $x = \frac{3\pi}{2}$, tanx and secx are not defined.
So, $x = \frac{\pi}{6}$ and $\frac{5\pi}{6}$
63. Answer (3)
Hint: $f(x) = \frac{5}{2} + 2\left[\cos x - \frac{1}{2}\right]^2$
Sol.: $f(x) = 3 + 2\cos^2 x - 2\cos x$
 $= \frac{5}{2} + 2\left(\cos x - \frac{1}{2}\right)^2$
So, $M = \frac{5}{2} + \frac{9}{2} = 7$ and $m = \frac{5}{2}$

64. Answer (1)

Hint :
$$\frac{3\tan x}{1-\tan^2 x} = 2$$

Sol. :
$$\log_2 \left(\frac{3\sin x}{\cos x(1+\tan x)(1-\tan x)} \right) = 2$$

$$\Rightarrow \quad \frac{3\tan x}{1-\tan^2 x} = 2$$

$$\Rightarrow \quad 2\tan^2 x + 3\tan x - 2 = 0$$

$$\Rightarrow \quad \tan x = \frac{1}{2} \text{ or } -2$$

$$\qquad but -1 < \tan x < 1 \text{ (domain)}$$

So,
$$\tan x = \frac{1}{2}$$

65. Answer (2)
Hint :
$$\sin x \le \cos^2 x \text{ and } \sin x \in (0, 1) \text{ and} \cos x \in (0, 1)$$

Sol. :
$$\log_{\cos x}(\sin x) \ge 2$$

$$\Rightarrow \quad \sin x \le \cos^2 x$$

$$\Rightarrow \quad \sin^2 x + \sin x - 1 \le 0$$

$$\qquad \sin x \in \left[\frac{-1 - \sqrt{5}}{2}, \frac{-1 + \sqrt{5}}{2}\right]$$

But
$$\sin x > 0$$

So,
$$\sin x \in \left(0, \frac{-1 + \sqrt{5}}{2}\right]$$

66. Answer (2)
Hint :
$$\sqrt{x - 4} \text{ and } \sqrt{x} \text{ must be integer}$$

Sol.:
$$\cos(\pi\sqrt{x-4}) \cdot \cos(\pi\sqrt{x}) = 1$$

 $\Rightarrow \quad \cos(\pi\sqrt{x-4}) = \cos(\pi\sqrt{x}) = 1$ or
 $\cos(\pi\sqrt{x-4}) = \cos(\pi\sqrt{x}) = -1$
 $\Rightarrow \quad \sqrt{x-4}$ and \sqrt{x} both should be integers.
 $\Rightarrow \quad x = 4$ is only possible solution.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 2 (Code-D) (Hints & Solutions)	All India Aakash Test Series for JEE (Main)-2021
67. Answer (4)	$\Rightarrow 2\cos\theta = 2\cos\left(\frac{\pi}{8} + \frac{\theta}{8}\right)$
Hint : Put $\tan\theta = x \Rightarrow \frac{2x^2}{1-x^2} = 1$	$\Rightarrow \frac{7\theta}{8} = \frac{\pi}{8}$
Sol.: $\frac{2\tan\theta}{1-\tan^2\theta} \cdot \tan\theta = 1$	$\Rightarrow \theta = \frac{\pi}{7}$
\Rightarrow $3\tan^2\theta = 1$	70. Answer (2)
$\Rightarrow \tan^2 \theta = \left(\frac{1}{\sqrt{3}}\right)^2$	Hint : $3\csc \theta - 4\sec \theta = 5\left[\frac{3}{5}\csc \theta - \frac{4}{5}\sec \theta\right]$
$\Rightarrow \qquad \theta = n\pi \pm \frac{\pi}{6}$	$= 5 \left[\frac{\sin 3\theta}{\sin \theta} - \frac{\cos 3\theta}{\cos \theta} \right].$ Sol.: $3 \csc \theta - 4 \sec \theta$
$\Rightarrow \qquad \theta = \frac{(6n\pm 1)\pi}{6} \qquad (n \in Z)$	$= 5 \left[\frac{\frac{3}{5} \cos \theta - \frac{4}{5} \sin \theta}{\sin \theta \cos \theta} \right]$
68. Answer (1)	$\begin{bmatrix} \sin 3\theta \cdot \cos \theta - \cos 3\theta \cdot \sin \theta \end{bmatrix}$
Hint : $x^2 + y^2 = a^2 + b^2$	$= 10 \left[\frac{\sin 3\theta \cdot \cos \theta - \cos 3\theta \cdot \sin \theta}{2\sin \theta \cdot \cos \theta} \right]$
Sol. : $a\sin\theta + b\cos\theta = x$ (i)	$=10\left[\frac{\sin 2\theta}{\sin 2\theta}\right]$
$a\cos\theta - b\sin\theta = y$ (ii)	
By squaring and adding	= 10
$a^2 + b^2 = x^2 + y^2$	71. Answer (05) Hint : $a^{b} = 1 \implies a = 1$ or $b = 0$ or $a = -1$ and b is
Now, $\frac{x+b}{y+a} + \frac{y-a}{x-b} = \frac{x^2+y^2-a^2-b^2}{(y+a)(x-b)} = 0$	even
69. Answer (1)	Sol.: If $(x^2 - 5x + 5)^{x^2 - 12x + 35} = 1$, then
Hint : Put $x = 2\cos\theta$ and solve for θ	(i) $x^2 - 12x + 35 = 0 \implies x = 5, 7$
Sol. : Let $x = 2\cos\theta$	(ii) $x^2 - 5x + 5 = 1 \implies x = 1, 4$
$2\cos\theta = \sqrt{2 + \sqrt{2 - 2\sin\frac{\theta}{2}}}$	(iii) $x^2 - 5x + 5 = -1$ and $x^2 - 12x + 35$ is even $\Rightarrow x = 3$ 72. Answer (05)
$\Rightarrow 2\cos\theta = \sqrt{2 + \sqrt{2 - 2\cos\left(\frac{\pi}{2} - \frac{\theta}{2}\right)}}$	Hint : Consider the roots $n - 2$, $n - 1$, n , $n + 1$ and $n + 2$.
$\Rightarrow 2\cos\theta = \sqrt{2 + 2\sin\left(\frac{\pi}{4} - \frac{\theta}{4}\right)}$	Sol. : Sum of roots = $-a = 5n$ Sum of product of two roots, = $b = 10n^2 - 5$
$\Rightarrow 2\cos\theta = \sqrt{2 + 2\cos\left(\frac{\pi}{4} + \frac{\theta}{4}\right)}$	Now $\frac{2a^2}{b+5} = \frac{2(-5n)^2}{10n^2} = 5$

 Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Main)-2021	Test - 2 (Code-D) (Hints & Solutions)
73. Answer (20) Hint : $z = i, -i, 2$. Sol. : $z(z-1)^2 = 2$ $z(z-1)^2 = 2$ $z^3 - 2z^2 + z - 2 = 0$ $z = 2, \pm i$ area of triangle $= \frac{1}{2}(2)(2)$	$= \frac{1}{4} \frac{\cos 18^{\circ} \cdot \sin 18^{\circ}}{\sin 36^{\circ}}$ $= \frac{1}{8}$ 75. Answer (27) Hint : $(3\sin\theta - 4\cos\theta)(3\cos\theta + 4\sin\theta)$ $= -\frac{7}{2}\sin\theta - 12\cos\theta$ Sol. : $(3\sin\theta - 4\cos\theta)(3\cos\theta + 4\sin\theta)$ $= -12(\cos^{2}\theta - \sin^{2}\theta) - 7(\sin\theta \cdot \cos\theta)$
= 2 74. Answer (08)	$=-\frac{1}{2}[24\cos 2\theta+7\sin 2\theta]$
Hint : Use $\cos\theta \cdot \cos(60^\circ - \theta) \cdot \cos(60^\circ + \theta) = \frac{1}{4}\cos 3\theta$	∴ Range of $a\sin\theta$ + $b\cos\theta$ is $\left[-\sqrt{a^2+b^2}, \sqrt{a^2+b^2}\right]$
Sol.: $\cos 6^{\circ} \cdot \sin 18^{\circ} \cdot \sin 24^{\circ} = \cos 6^{\circ} \cdot \cos 66^{\circ} \cdot \sin 18^{\circ}$ $= \frac{\cos 6^{\circ} \cdot \cos 66^{\circ} \cdot \cos 54^{\circ} \cdot \sin 18^{\circ}}{\cos 54^{\circ}}$	So maximum value of given expression is $\frac{1}{2}\sqrt{24^2 + 7^2} = \frac{25}{2}$

